Tightness of the weight-distribution bound for some strongly regular graphs

> Sergey Goryainov (Hebei Normal University)

based on joint work in progress with Leonid Shalaginov

Mathematical Centre in Akademgorodok

November 1st, 2021

Eigenfunctions of graphs

Let $\Gamma = (V, E)$ be a k-regular graph on n vertices and θ be an eigenvalue of its adjacency matrix A. Let $u = (u_1, \ldots, u_n)^t$ be an eigenvector of A corresponding to θ . Then u defines a function $f_u : V \mapsto \mathbb{R}$, which is called a θ -eigenfunction of Γ.

For an eigenfunction f_u of Γ, the *support* is the set

$$
Supp(f_u) := \{ x \in V \mid f_u(x) \neq 0 \}.
$$

MS-problem

The following problem was first formulated in [1] (see also [2] for the motivation and details).

Problem 1 (MS-problem)

Given a graph Γ and its eigenvalue θ , find the minimum cardinality of the support of a θ -eigenfunction of Γ .

A θ -eigenfunction having the minimum cardinality of support is called optimal.

Problem 2

Given a graph Γ and its eigenvalue θ , characterise optimal θ-eigenfunctions of Γ.

[1] K. V. Vorobev, D. S. Krotov, Bounds for the size of a minimal 1-perfect bitrade in a Hamming graph, Journal of Applied and Industrial Mathematics 9(1) (2015) 141–146, translated from Discrete Analysis and Operations Research 21(6) (2014) 3–10.

[2] E. Sotnikova, A. Valyuzhenich, Minimum supports of eigenfunctions of graphs: a survey, <https://arxiv.org/abs/2102.11142> (c) (e) (e) e) e \circ

A survey on Problem 2

Recently, Problem 2 was solved for several classes of graphs:

- lacktriangleright all eigenvalues of Hamming graphs $H(n, q)$ when $q = 2$ or $q > 4$ and some eigenvalues of $H(n, q)$ when $q = 3, 4$;
- \triangleright all eigenvalues of Johnson graphs (asymptotically);
- \triangleright the smallest eigenvalue of Hamming, Johnson and Grassmann graphs;
- \blacktriangleright the largest non-principal eigenvalue of a Star graph S_n , $n \geq 8$;

 \triangleright the largest non-principal eigenvalue of Doob graphs.

Excepting the results from the previous slide, Problem 1 was solved for several more classes of graphs:

- \triangleright both non-principal eigenvalues of Paley graphs of square order;
- \triangleright strongly regular bilinear forms graphs over a prime field.

KOL ET KENKEN ADNA

Weight-distribution bound

Let Γ be a distance-regular graph of diameter $D(\Gamma)$ with intersection array $(b_0, b_1, \ldots, b_{D(\Gamma)-1}; c_1, c_2, \ldots, c_{D(\Gamma)}).$

For an eigenvalue θ of Γ, the following bound was proposed in [3, Corollary 1].

Theorem (Weight-distribution bound)

A θ-eigenfunction f of Γ has at least $\sum |W_i|$ nonzeros, where $D(G)$ $i=0$

$$
W_0 = 1,
$$

$$
W_1 = \theta
$$

and

$$
W_i = \frac{(\theta - a_{i-1})W_{i-1} - b_{i-2}W_{i-2}}{c_i}.
$$

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016) 1150–1157.**KOD START ARE A BUILDING** Known results when the weight-distribution bound is tight

- \triangleright the eigenvalue -1 of the Boolean Hamming graph of an odd dimension and the minimum eigenvalue of an arbitrary Hamming graph;
- \triangleright both non-principal eigenvalues of Paley graphs of square order;
- \triangleright the minimum eigenvalue of Johnson graphs;
- \triangleright the minimum eigenvalue of Grassmann graphs;
- \triangleright the minimum eigenvalue of strongly regular bilinear forms graphs over a prime field.

KORKAR KERKER EL POLO

Tightness of the weight-distribution bound for the smallest eigenvalue of a DRG

It was shown in [3] that, for the smallest eigenvalue of a distance-regular graph Γ, the tightness of the weight-distribution bound is equivalent to the existence of an isometric bipartite distance-regular induced subgraph $T_0 \cup T_1$, where T_0 and T_1 are parts, such that an optimal eigenfunction, up to multiplication by a non-zero constant, has the following form:

$$
f(x) = \begin{cases} 1, & \text{if } x \in T_0; \\ -1, & \text{if } x \in T_1; \\ 0, & \text{otherwise.} \end{cases}
$$

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016) 1150–1157.

KORKAR KERKER EL POLO

Tightness of the weight-distribution bound for a non-principal eigenvalue of an SRG

If Γ is a strongly regular graph with non-principal eigenvalues r, s, where $s < 0 < r$, the following holds.

Lemma 1 ([3], Weight-distribution bound for SRG) (1) An s-eigenfunction f of Γ has at least $(-2s)$ nonzeros; $|Supp(f)|$ meets the bound if and only if there exists an induced complete bipartite subgraph with parts T_0 , T_1 of size $-s$; (2) An r-eigenfunction f of Γ has at least $2(r+1)$ nonzeros; $|Supp(f)|$ meets the bound if and only if there exists an induced disjoint union of two cliques T_0 , T_1 of size $r + 1$.

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016) 1150–1157.

KID KA KERKER E VOOR

Tightness of the weight-distribution bound for Paley graphs of square order

In [4], for Paley graphs $P(q^2)$, we showed the tightness of the weight-distribution bound for both non-principal eigenvalues, which are $s = \frac{-1-q}{2}$ $\frac{1-q}{2}$ and $r = \frac{-1+q}{2}$ $rac{1+q}{2}$.

Let β be a primitive element in \mathbb{F}_{q^2} . Put $\omega := \beta^{q-1}$. Then $Q = \langle \omega \rangle$ is the subgroup of order $q + 1$ in $\mathbb{F}_{q^2}^*$.

Facts about Q:

- \triangleright Q is an oval in the corresponding affine plane;
- ► Q is the kernel of the norm mapping $N: \mathbb{F}_{q^2}^* \mapsto \mathbb{F}_q^*$, which means that $Q = \{ \gamma \in \mathbb{F}_{q^2}^* \mid \gamma^{q+1} = 1 \}$, or, equivalently, $Q = \{x + y\alpha \mid x, y \in \mathbb{F}_q, x^2 - y^2d = 1\}$, where d is a non-square in \mathbb{F}_q^* and $\alpha^2 = d$.

[4] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields and Their Applications 52 (2018) 361–369.।
In the Reserve to the Rhite Park Tightness of the weight-distribution bound for Paley graphs of square order

Let $Q_0 = \langle \omega^2 \rangle$ and $Q_1 = \omega Q_0$.

Facts about Q:

- \triangleright if $q \equiv 1(4)$, then $Q = Q_0 \cup Q_1$ induces a complete bipartite graph with parts Q_0 and Q_1 ;
- if $q \equiv 3(4)$, then $Q = Q_0 \cup Q_1$ induces a pair of disjoint cliques Q_0 and Q_1 .

Corollary 1

The weight-distribution bound is tight for both non-principal eigenvalues of Paley graphs of square order.

Knowing the structure of Q , we were also able to construct new maximal cliques of the second largest known size in Paley graphs of square order (see [4]).

[4] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields and Their Applications 52 (2018) 361–369.

Generalised Paley graphs of square order; WDB for the smallest eigenvalue

Let $m > 1$ be a positive integer. Let q be an odd prime power, $q \equiv 1 \ (2m)$. The m-Paley graph on \mathbb{F}_q , denoted $GP(q, m)$, is the Cayley graph $Cay(\mathbb{F}_q^+,\mathbb{F}_q^*)^m$, where $(\mathbb{F}_q^*)^m$ is the set of m-th powers in \mathbb{F}_q^* .

We consider the graphs $GP(q^2, m)$, where q is an odd prime power and m divides $q + 1$; these graphs are strongly regular and form a generalisation of Paley graphs of square order (the usual Paley graphs of square order are just 2-Paley graphs of square order).

The eigenvalues of $GP(q^2, m)$ are $s = \left(-\frac{q+1}{m}\right)$ $\binom{m+1}{m}$ and $r = \frac{(m-1)q-1}{m}$ $\frac{(1)q-1}{m}$. Given an odd prime power q and an integer $m > 1$ such that m divides $q+1$, a $\left(-\frac{q+1}{m}\right)$ $\frac{m+1}{m}$)-eigenfunction of the generalised Paley graph $GP(q^2, m)$ has at least $\frac{2(q+1)}{m}$ non-zeroes.

Structure of Q (I)

Let us divide Q into m parts

$$
Q = Q_0 \cup Q_1 \cup \ldots \cup Q_{m-1},
$$

where $Q_0 = \langle \omega^m \rangle$, $Q_1 = \omega Q_0, \ldots, Q_{m-1} = \omega^{m-1} Q_0$.

Lemma 2 (G., Shalaginov, $2021+$)

Let q be a prime power and m be an integer such that $m > 1$, m divides $q + 1$. The mapping $\gamma \mapsto \gamma^{q-1}$ is a homomorphism from $\mathbb{F}_{q^2}^*$ to Q. Moreover, an element γ is an m-th power in $\mathbb{F}_{q^2}^*$ if and only if γ^{q-1} is an m-th power in Q.

Lemma 3 (G., Shalaginov, $2021+$)

Let γ be an arbitrary element from $Q, \gamma \neq 1$. Then, for the image of $(γ - 1)$ under the action of the homomorphism, the following equality holds:

$$
(\gamma - 1)^{q-1} = -\frac{1}{\gamma}.
$$

The following theorem basically states that each of the sets $Q_0, Q_1, \ldots, Q_{m-1}$ induces either a clique or an independent set, and there are at most two cliques among them.

Moreover, the theorem states that for every independent set Q_{i_1} , there exists uniquely determined independent set Q_{i_2} among $Q_0, Q_1, \ldots, Q_{m-1}$ such that there are all possible edges between Q_{i_1} and Q_{i_2} and there are no edges between Q_{i_1} and $Q \setminus Q_{i_2}.$

Structure of Q (III)

Theorem 1 (G., Shalaginov, $2021+$) Given an odd prime power q and an integer $m > 1$, m divides $q + 1$, the following statements hold for the subgraph of $GP(q^2, m)$ induced by Q . (1) If m divides $\frac{q+1}{2}$ and m is odd, then Q_0 is a clique, and Q_1, \ldots, Q_{m-1} are independent sets; moreover, for any distinct i_1, i_2 such that $0 \le i_1 \le i_2 \le m-1$, there are all possible edges between the sets Q_{i_1} and Q_{i_2} if

$$
i_1 + i_2 \equiv 0 \ (mod \ m),
$$

and there are no such edges if

$$
i_1 + i_2 \not\equiv 0 \ (mod \ m).
$$

In particular, $Q_1 \cup Q_{m-1}, \ldots, Q_{\frac{m-1}{2}} \cup Q_{\frac{m+1}{2}}$ induce $\frac{m-1}{2}$ complete bipartite graphs.

Structure of Q (IV)

(2) If m divides $\frac{q+1}{2}$ and m is even, then $Q_0, Q_{\frac{m}{2}}$ are cliques, and $Q_1, \ldots, Q_{\frac{m}{2}-1}, Q_{\frac{m}{2}+1}, \ldots, Q_{m-1}$ are independent sets; moreover, for any distinct i_1, i_2 such that $0 \leq i_1 < i_2 \leq m-1$, there are all possible edges between the sets Q_{i_1} and Q_{i_2} if

$$
i_1 + i_2 \equiv 0 \pmod{m}
$$
 and $\{i_1, i_2\} \neq \{0, \frac{m}{2}\}\$

and there are no such edges if

$$
i_1 + i_2 \not\equiv 0 \pmod{m}
$$
 or $\{i_1, i_2\} = \{0, \frac{m}{2}\}.$

KORK EXTERNED ARA

In particular, $Q_1 \cup Q_{m-1}, \ldots, Q_{\frac{m}{2}-1} \cup Q_{\frac{m}{2}+1}$ induce $(\frac{m}{2}-1)$ complete bipartite graphs.

Structure of Q (V)

(3) If m does not divide $\frac{q+1}{2}$, then m is even. (3.1) If $\frac{m}{2}$ is odd, then $Q_0, Q_1, \ldots, Q_{m-1}$ are independent sets; moreover, for any distinct i_1, i_2 such that $0 \leq i_1 < i_2 \leq m-1$, there are all possible edges between the sets Q_{i_1} and Q_{i_2} if

$$
i_1 + i_2 \equiv \frac{m}{2} \ (mod \ m),
$$

and there are no such edges if

$$
i_1 + i_2 \not\equiv \frac{m}{2} \ (mod \ m).
$$

In particular, if $m = 2$, $Q = Q_0 \cup Q_1$ is a complete bipartite graph; if $m > 6$, $Q_0\cup Q_{\tfrac{m}{2}},\ldots,Q_{\tfrac{m-2}{4}}\cup Q_{\tfrac{m+2}{4}},Q_{\tfrac{m}{2}+1}\cup Q_{m-1},\ldots,Q_{\tfrac{3m-2}{4}}\cup Q_{\tfrac{3m+2}{4}}$ induce $\frac{\overline{m}}{2}$ complete bipartite graphs.

Structure of Q (VI)

(3.2) If $\frac{m}{2}$ is even, then $Q_{\frac{m}{4}}$, $Q_{\frac{3m}{4}}$ are cliques, and $Q_0,\ldots,\tilde{Q}_{\frac{m}{4}-1},Q_{\frac{m}{4}+1},\ldots,\tilde{Q}_{\frac{3m}{4}-1},Q_{\frac{3m}{4}+1},\ldots,Q_{m-1} \, \, \rm{are}$ independent sets; moreover, for any distinct i_1, i_2 such that $0 \leq i_1 < i_2 \leq m-1$, there are all possible edges between the sets Q_{i_1} and Q_{i_2} if

$$
i_1 + i_2 \equiv \frac{m}{2} \pmod{m}
$$
 and $\{i_1, i_2\} \neq \{\frac{m}{2}, \frac{3m}{2}\},\$

and there are no such edges if

$$
i_1 + i_2 \neq \frac{m}{2} \pmod{m}
$$
 or $\{i_1, i_2\} = \{\frac{m}{2}, \frac{3m}{2}\}.$

In particular, if $m = 4$, $Q_0 \cup Q_2$ is a complete bipartite graph; if $m \geq 8$, then $Q_0\cup Q_{\frac{m}{2}},\ldots,Q_{\frac{m-4}{4}}\cup Q_{\frac{m+4}{4}},Q_{\frac{m}{2}+1}\cup Q_{m-1},\ldots,Q_{\frac{3m-4}{4}}\cup Q_{\frac{3m+4}{4}}$ induce $\frac{m-2}{2}$ complete bipartite graphs.

Structure of Q (VII) and tightness of WDB for the smallest eigenvalue of $GP(q^2, m)$

Corollary 2

Let q be an odd prime power and m be an integer $m \geq 2$, m divides $q + 1$. Then, except for the case $m = 2$ and 2 divides $q+1$ $\frac{+1}{2}$, there is at least one pair Q_{i_1}, Q_{i_2} among Q_0, \ldots, Q_{m-1} such that $Q_{i_1} \cup Q_{i_2}$ induces a complete bipartite subgraph.

Corollary 3

Let q be an odd prime power and m be an integer $m \geq 2$, m divides $q + 1$. Then the weight-distribution bound is tight for the eigenvalue $\left(-\frac{q+1}{m}\right)$ $\frac{m+1}{m}$) of $GP(q^2, m)$.

Strongly regular graphs related to polar spaces

- Affine polar graphs $VO^+(2e,q)$
- \triangleright Affine polar graphs $VO^-(2e, q)$
- \triangleright Orthogonal graphs $O(2e+1, q)$, $O^+(2e, q)$ and $O^-(2e, q)$
- \blacktriangleright Symplectic graphs $Sp(2e,q)$
- Initiary graphs $U(n, q)$

For each of these families of strongly regular graphs, we show the tightness of the weight-distribution bound for the positive non-principal eigenvalue r by constructing a pair of induced isolated cliques of size $r + 1$.

[5] A. E. Brouwer, Affine polar graphs,

<https://www.win.tue.nl/~aeb/graphs/VO.html>

[6] A. E. Brouwer, Families of graphs,

<https://www.win.tue.nl/~aeb/graphs/srghub.html>

[7] A. E. Brouwer, Symplectic graphs,

<https://www.win.tue.nl/~aeb/graphs/Sp.html>

[8] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer-Verlag, New York (2012).

Hyperbolic quadric

Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e > 2$ and q is a prime power, provided with the hyperbolic quadratic form

$$
HQ(x) = x_1x_2 + x_3x_4 + \ldots + x_{2e-1}x_{2e}.
$$

The set Q^+ of zeroes of HQ is called the hyperbolic quadric, where e is the maximal dimension of a subspace in Q^+ . A generator of Q^+ is a subspace of maximal dimension e in Q^+ .

Lemma 4 ([9, Theorem 7.130])

Given an $(e-1)$ -dimensional subspace W of Q^+ , there are precisely two generators that contain W.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics, Birkhäuser Basel (2016).

Affine polar graphs $VO^+(2e,q)$ (I)

Denote by $VO^+(2e,q)$ the graph on V with two vectors x, y being adjacent if and only if $Q(x - y) = 0$. The graph $VO^+(2e,q)$ is known as an affine polar graph.

Lemma 5

The graph $VO^+(2e,q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = q^{2e}
$$

\n
$$
k = (q^{e-1} + 1)(q^{e} - 1)
$$

\n
$$
\lambda = q(q^{e-2} + 1)(q^{e-1} - 1) + q - 2
$$

\n
$$
\mu = q^{e-1}(q^{e-1} + 1)
$$
\n(1)

and eigenvalues $r = q^e - q^{e-1} - 1$, $s = -q^{e-1} - 1$.

Affine polar graphs $VO^+(2e,q)$ (II)

Note that $VO^+(2e,q)$ is isomorphic to the graph defined on the set of all $(2 \times e)$ -matrices over \mathbb{F}_q of the form

$$
\left(\begin{array}{cccc} x_1 & x_3 & \ldots & x_{2e-1} \\ x_2 & x_4 & \ldots & x_{2e} \end{array}\right),
$$

where two matrices are adjacent if and only if the scalar product of the first and the second rows of their difference is equal to 0.

Lemma 6

There is a one-to-one correspondence between cosets of generators of Q^+ and maximal cliques in $VO^+(2e, q)$.

Lemma 7

Every maximal clique in $VO^+(2e,q)$ is a q^{e-1} -regular q^e -clique.

An optimal $(q^e - q^{e-1} - 1)$ -eigenfunction of $VO^+(2e, q)$

In view of Lemmas 1 and 5, a $(q^e - q^{e-1} - 1)$ -eigenfunction of $VO^+(2e,q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size $(q^e - q^{e-1})$, and the cardinality of support is $2(q^e - q^{e-1})$. Take the $(e - 1)$ -dimensional subspace

$$
W = \left(\begin{array}{cccc} * & \ldots & * & 0 \\ 0 & \ldots & 0 & 0 \end{array}\right),
$$

where the size of matrices is $2 \times e$. According to Lemma 4, the subspace W is contained in exactly two generators: these are

$$
W_0=\left(\begin{array}{cccc} * & \ldots & * & * \\ 0 & \ldots & 0 & 0 \end{array}\right) \text{ and } W_1=\left(\begin{array}{cccc} * & \ldots & * & 0 \\ 0 & \ldots & 0 & * \end{array}\right).
$$

The cliques W_0 and W_1 are q^{e-1} -regular and have q^{e-1} vertices in common. Thus, the sets $W_0 \setminus W$ and $W_1 \setminus W$ induce a pair of disjoint cliques of size $(q^e - q^{e-1})$, which means that the weight-distribution bound is tight for the eigenvalue $(q^e - q^{e-1} - 1).$

Elliptic quadric

Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e > 2$ and q is a prime power, provided with the elliptic quadratic form

$$
EQ(x) = p(x_1, x_2) + x_3x_4 + \ldots + x_{2e-1}x_{2e},
$$

where $p(x_1, x_2)$ is an irreducible homogeneous polynomial of degree 2 (it means that $p(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2$, $a \neq 0$, $c \neq 0$.

The set Q^- of zeroes of EQ is called the elliptic quadric, where $e-1$ is the maximal dimension of a subspace in Q^- . A generator of Q^- is a subspace of maximal dimension $e-1$ in Q^{-} (see [9]).

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics, Birkhäuser Basel (2016).

Affine polar graphs $VO^-(2e,q)$ (I)

Denote by $VO^-(2e,q)$ the graph on V with two vectors x, y being adjacent if and only if $Q(x - y) = 0$. The graph $VO^-(2e,q)$ is known as an affine polar graph.

Lemma 8

The graph $VO^-(2e,q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = q^{2e}
$$

\n
$$
k = (q^{e-1} - 1)(q^{e} + 1)
$$

\n
$$
\lambda = q(q^{e-2} - 1)(q^{e-1} + 1) + q - 2
$$

\n
$$
\mu = q^{e-1}(q^{e-1} - 1)
$$
\n(2)

KORKA SERKER ORA

and eigenvalues $r = q^{e-1} - 1$, $s = -q^e + q^{e-1} - 1$.

Affine polar graphs $VO^-(2e,q)$ (II)

Note that $VO^-(2e,q)$ is isomorphic to the graph defined on the set of all $(2 \times e)$ -matrices over \mathbb{F}_q of the form

$$
\left(\begin{array}{cccc}\nx_1 & x_3 & \dots & x_{2e-1} \\
x_2 & x_4 & \dots & x_{2e}\n\end{array}\right),\n\tag{3}
$$

where two matrices are adjacent if and only if the modified scalar product (for the first column we take $p(x_1, x_2)$) instead of x_1x_2 of the first and the second rows of their difference is equal to 0.

An optimal $(q^{e-1}-1)$ -eigenfunction of $VO^-(2e, q)$

In view of Lemmas 1 and 8, a $(q^{e-1} - 1)$ -eigenfunction of $VO^-(2e,q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size q^{e-1} , and the cardinality of support is $2q^{e-1}$. Consider the generator

$$
U = \left(\begin{array}{cccc} 0 & * & \dots & * \\ 0 & 0 & \dots & 0 \end{array}\right)
$$

and its additive shift

$$
\left(\begin{array}{cccc} 1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \end{array}\right) + U = \left(\begin{array}{cccc} 1 & * & \ldots & * \\ 0 & 0 & \ldots & 0 \end{array}\right),
$$

which are cliques of size q^{e-1} . It is easy to see that there are no edges between these two cliques, which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1}-1)$ of $VO^-(2e, q)$.

Parabolic quadric

Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e > 2$ and q is a prime power, provided with the parabolic quadratic form

$$
PQ(x) = x_0^2 + x_1x_2 + \ldots + x_{2e-1}x_{2e}.
$$

The form PQ defines a bilinear form

$$
\beta_{PQ}(x,y) = PQ(x+y) - PQ(x) - PQ(y).
$$

A vector $x \in V$ is called isotropic if $PQ(x) = 0$. A subspace in V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics, Birkhäuser Basel (2016).

Orthogonal graphs $O(2e+1, q)$ (I)

Denote by $O(2e+1, q)$ the graph whose vertices are all isotropic (w.r.t. to the parabolic quadric) 1-dimensional subspaces on V with two vertices $[x], [y]$ being adjacent whenever one of the following three equivalent conditions holds:

$$
\blacktriangleright \ \beta_{PQ}(x,y) = 0;
$$

- \blacktriangleright $PQ(x + y) = 0;$
- \blacktriangleright the 2-dimensional subspace including [x] and [y] is isotropic.

Orthogonal graphs $O(2e+1, q)$ (II)

Lemma 9

The graph $O(2e+1, q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = \frac{q^{2e} - 1}{q - 1}
$$

\n
$$
k = \frac{q(q^{2e-2} - 1)}{q - 1}
$$

\n
$$
\lambda = \frac{q^{2}(q^{2e-4} - 1)}{q - 1} + q - 1
$$

\n
$$
\mu = \frac{k}{q} = \lambda + 2
$$

\n(4)

KORKARKKERKER POLO

and eigenvalues $r = q^{e-1} - 1$, $s = -q^{e-1} - 1$.

An optimal $(q^{e-1} - 1)$ -eigenfunction of $O(2e + 1, q)$

In view of Lemmas 1 and 9, a $(q^{e-1} - 1)$ -eigenfunction of $O(2e+1, q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size q^{e-1} , and the cardinality of support is $2q^{e-1}$.

Consider the sets of vertices

$$
V_0 = \{ [(0, 1, 0, v_3, 0, \ldots, v_{2e-1}, 0)] \mid v_3, \ldots, v_{2e-1}, \in \mathbb{F}_q \},
$$

$$
V_1 = \{ [(0, 0, 1, v_3, 0, \dots, v_{2e-1}, 0)] \mid v_3, \dots, v_{2e-1}, \in \mathbb{F}_q \}.
$$

The sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-1} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1} - 1)$ of $O(2e + 1, q)$.

Hyperbolic quadric (revisited)

Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e > 2$ and q is a prime power, provided with the hyperbolic quadratic form

$$
HQ(x) = x_1x_2 + x_3x_4 + \ldots + x_{2e-1}x_{2e}.
$$

The form HQ defines a bilinear form

$$
\beta_{HQ}(x,y) = HQ(x+y) - HQ(x) - HQ(y).
$$

A vector $x \in V$ is called isotropic if $HQ(x) = 0$. A subspace in V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics, Birkhäuser Basel (2016).

Elliptic quadric (revisited)

Let V be a $(2e)$ -dimensional vector space over a finite field \mathbb{F}_q , where $e \geq 2$ and q is a prime power, provided with the elliptic quadratic form

$$
EQ(x) = p(x_1, x_2) + x_3x_4 + \ldots + x_{2e-1}x_{2e},
$$

where $p(x_1, x_2)$ is an irreducible homogeneous polynomial of degree 2 (it means that $p(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2$, $a \neq 0$, $c \neq 0$.

The form EQ defines a bilinear form

$$
\beta_{EQ}(x,y) = EQ(x+y) - EQ(x) - EQ(y).
$$

A vector $x \in V$ is called isotropic if $EQ(x) = 0$. A subspace in V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in Mathematics, Birkhäuser Basel (2016). **KORKAR KERKER EL POLO**

Orthogonal graphs $O^{\varepsilon}(2e,q)$ (I)

Denote by $O^{\varepsilon}(2e,q)$ ($\varepsilon = 1$ or -1) the graph whose vertices are all isotropic (w.r.t. to the hyperbolic quadric if $\varepsilon = 1$ and elliptic quadric if $\varepsilon = -1$) 1-dimensional subspaces on V with two vertices $[x]$, $[y]$ being adjacent whenever one of the following three equivalent conditions holds:

- \blacktriangleright $\beta_{HO}(x, y) = 0$ (respectively, $\beta_{EO}(x, y) = 0$);
- \blacktriangleright HQ(x + y) = 0 (respectively, $EQ(x + y) = 0$);
- \triangleright the 2-dimensional subspace including [x] and [y] is isotropic.

Orthogonal graphs $O^{\varepsilon}(2e,q)$ (II)

Lemma 10

The graph $O^{\varepsilon}(2e,q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = \frac{q^{2e} - 1}{q - 1} + \varepsilon q^{e-1}
$$

\n
$$
k = \frac{q(q^{2e-2} - 1)}{q - 1} + \varepsilon q^{e-1}
$$

\n
$$
\lambda = k - q^{2e-3} - 1
$$

\n
$$
\mu = \frac{k}{q}
$$
 (5)

KORKA SERKER ORA

and eigenvalues $\theta_1 = \varepsilon q^{e-1} - 1$, $\theta_2 = -\varepsilon q^{e-2} - 1$.

An optimal $(q^{e-1} - 1)$ -eigenfunction of $O^+(2e, q)$

In view of Lemmas 1 and 10, a $(q^{e-1} - 1)$ -eigenfunction of $O^+(2e, q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size q^{e-1} , and the cardinality of support is $2q^{e-1}$.

Consider the sets of vertices

$$
V_0 = \{[(1, 0, v_3, 0, \dots, v_{2e-1}, 0)] \mid v_3, \dots, v_{2e-1}, \in \mathbb{F}_q\},
$$

$$
V_1 = \{[(0, 1, v_3, 0, \dots, v_{2e-1}, 0)] \mid v_3, \dots, v_{2e-1}, \in \mathbb{F}_q\}.
$$

The sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-1} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1}-1)$ of $O^+(2e,q)$.

KORKAR KERKER DRAG

An optimal $(q^{e-2} - 1)$ -eigenfunction of $O^-(2e, q)$

In view of Lemmas 1 and 10, a $(q^{e-2} - 1)$ -eigenfunction of $O^-(2e, q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size q^{e-2} , and the cardinality of support is $2q^{e-2}$.

Consider the sets of vertices

$$
V_0 = \{ [(0, 0, 1, 0, v_5, 0, \dots, v_{2e-1}, 0)] \mid v_5, \dots, v_{2e-1}, \in \mathbb{F}_q \},
$$

$$
V_1 = \{ [(0, 0, 0, 1, v_5, 0, \dots, v_{2e-1}, 0)] \mid v_5, \dots, v_{2e-1}, \in \mathbb{F}_q \}.
$$

The sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-2} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-2} - 1)$ of $O^-(2e, q)$.

Symplectic graphs $SP(2e, q)$ (I)

Let V be a $(2e)$ -dimensional vector space over a finite field \mathbb{F}_q , where $e \geq 2$ and q is a prime power. For any nonzero $v \in V$, denote by $[v]$ the 1-dimensional subspace generated by v. Let

$$
K = \left(\begin{array}{cc} 0 & I^{(e)} \\ -I^{(e)} & 0 \end{array} \right).
$$

The symplectic graph $Sp(2e, q)$ relative to K over \mathbb{F}_q is the graph with the set of 1-dimensional subspaces of V as its vertex set and the adjacency defined by

 $[v] \sim [u]$ if and only if $vKu^t = 0$ for 1-dimensional subspaces [v], [u].

Equivalently, for arbitrary non-zero vectors $v = (v_1, \ldots, v_e, v_{e+1}, \ldots, v_{2e})$ and $u = (u_1, \ldots, u_e, u_{e+1}, \ldots, u_{2e}),$ the vertices $[v]$ and $[u]$ are adjacent if and only if

$$
(v_1u_{e+1} + \ldots + v_eu_{2e}) - (v_{e+1}u_1 + \ldots + v_{2e}u_e) = 0.
$$

KID KA KERKER E VOOR

Symplectic graphs $SP(2e, q)$ (II)

Lemma 11

The graph $SP(2e, q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = \frac{q^{2e} - 1}{q - 1}
$$

\n
$$
k = \frac{q(q^{2e-2} - 1)}{q - 1}
$$

\n
$$
\lambda = \frac{q^{2}(q^{2e-4} - 1)}{q - 1} + q - 1
$$

\n
$$
\mu = \frac{k}{q} = \lambda + 2
$$

\n(6)

KORKARKKERKER POLO

and eigenvalues $r = q^{e-1} - 1$, $s = -q^{e-1} - 1$.

An optimal $(q^{e-1} - 1)$ -eigenfunction of $SP(2e, q)$

In view of Lemmas 1 and 11, a $(q^{e-1} - 1)$ -eigenfunction of $SP(2e, q)$ whose cardinality of support meets the weight-distribution bound is given by a pair of disjoint cliques of size q^{e-1} , and the cardinality of support is $2q^{e-1}$.

$$
V_0 = \{ [(0, v_2, \dots, v_e, 1, 0, \dots, 0)] \mid v_2, \dots, v_e \in \mathbb{F}_q \},
$$

$$
V_1 = \{ [(1, v_2, \dots, v_e, 1, 0, \dots, 0)] \mid v_2, \dots, v_e \in \mathbb{F}_q \}.
$$

The sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-1} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1} - 1)$ of $SP(2e, q)$.

Hermitian form

Let V be an *n*-dimensional vector space over a finite field \mathbb{F}_q , where q is a square. The Hermitian form on V is the mapping

$$
H(x,y) = x_1 y_1^{\sqrt{q}} + \ldots + x_n y_n^{\sqrt{q}}.
$$

A vector $x \in V$ is called isotropic if

$$
H(x,x) = x_1^{\sqrt{q}+1} + \ldots + x_n^{\sqrt{q}+1} = 0.
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 』 9 Q Q

A subspace in V is called isotropic if every vector in this subspace is isotropic.

Denote by $U(n, q)$ the graph whose vertices are all isotropic 1-dimensional subspaces on V with two vertices $[x]$, $[y]$ being adjacent whenever one of the following two equivalent conditions holds:

$$
\blacktriangleright H(x,y) = 0;
$$

 \triangleright the 2-dimensional subspace including [x] and [y] is isotropic.

KORKA SERKER ORA

Unitary graphs $U(2e, q)$

Lemma 12

The graph $U(2e, q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = \frac{(q^e - 1)(q^{e - \frac{1}{2}} + 1)}{q - 1}
$$

\n
$$
k = \frac{q(q^{e - 1} - 1)(q^{e - \frac{3}{2}} + 1)}{q - 1}
$$

\n
$$
\lambda = \frac{q^2(q^{e - 2} - 1)(q^{e - \frac{5}{2}} + 1)}{q - 1} + q - 1
$$

\n
$$
\mu = \frac{k}{q}
$$
\n(7)

KORKARKKERK EL VAN

and eigenvalues $r = q^{e-1} - 1$, $s = -q^{e-\frac{3}{2}} - 1$.

Unitary graphs $U(2e+1, q)$

Lemma 13

The graph $U(2e+1, q)$ is a vertex-transitive strongly regular graph with parameters

$$
v = \frac{(q^e - 1)(q^{e + \frac{1}{2}} + 1)}{q - 1}
$$

\n
$$
k = \frac{q(q^{e - 1} - 1)(q^{e - \frac{1}{2}} + 1)}{q - 1}
$$

\n
$$
\lambda = \frac{q^2(q^{e - 2} - 1)(q^{e - \frac{3}{2}} + 1)}{q - 1} + q - 1
$$

\n
$$
\mu = \frac{k}{q}
$$

\n(8)

KORKARKKERK EL VAN

and eigenvalues $r = q^{e-1} - 1$, $s = -q^{e-\frac{1}{2}} - 1$.

An optimal $(q^{e-1}-1)$ -eigenfunction of $U(n,q)$ in the case of odd *a*

Let β be a primitive element in \mathbb{F}_q . Put $\gamma = \beta^{\frac{\sqrt{q-1}}{2}}$ $\overline{2}$, which means that $\gamma^{\sqrt{q}+1} = -1$. If $n = 2e$, consider the sets of vertices

$$
V_0 = \{ [(v_1, v_1\gamma, v_3, v_3\gamma, \dots, v_{2e-3}, v_{2e-3}\gamma, \gamma, 1)] \},
$$

$$
V_1 = \{ [(v_1, v_1\gamma, v_3, v_3\gamma, \dots, v_{2e-3}, v_{2e-3}\gamma, -\gamma, 1)] \};
$$

if $n = 2e + 1$, consider the sets of vertices

$$
V_0 = \{ [(v_1, v_1\gamma, v_3, v_3\gamma, \dots, v_{2e-3}, v_{2e-3}\gamma, \gamma, 1, 0)] \},
$$

$$
V_1 = \{ [(v_1, v_1\gamma, v_3, v_3\gamma, \dots, v_{2e-3}, v_{2e-3}\gamma, -\gamma, 1, 0)] \},
$$

where in all cases $v_1, v_3, \ldots, v_{2e-3}$ run over \mathbb{F}_q independently.

The sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-1} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1}-1)$ $(q^{e-1}-1)$ $(q^{e-1}-1)$ o[f](#page-46-0) $U(n,q)$ in the cas[e o](#page-44-0)f [o](#page-46-0)[d](#page-45-0)d q[.](#page-0-0) 000

An optimal $(q^{e-1}-1)$ -eigenfunction of $U(n,q)$ in the case of even q

The norm mapping $\mathbb{F}_q^* \mapsto \mathbb{F}_{\sqrt{q}}^*$ is a homomorphism defined by the rule $\delta \longrightarrow \delta^{\sqrt{q}+1}$. Note that there are exactly $\sqrt{q}+1$ elements with norm 1. Let α be an element with norm 1, $\alpha \neq 1$.

If $n = 2e$, consider the sets of vertices

$$
V_0 = \{ [(v_1, v_1, v_3, v_3, \dots, v_{2e-3}, v_{2e-3}, 1, 1)] \mid v_1, v_3, \dots, v_{2e-3} \in \mathbb{F}_{q^2} \},
$$

\n
$$
V_1 = \{ [(v_1, v_1, v_3, v_3 \dots, v_{2e-3}, v_{2e-3}, \alpha, 1)] \mid v_1, v_3, \dots, v_{2e-3} \in \mathbb{F}_{q^2} \};
$$

\nif $n = 2e + 1$, consider the sets of vertices

$$
V_0 = \{ [(v_1, v_1, v_3, v_3, \dots, v_{2e-3}, v_{2e-3}, 1, 1, 0)] \mid v_1, v_3, \dots, v_{2e-3} \in \mathbb{F}_{q^2} \},
$$

\n
$$
V_1 = \{ [(v_1, v_1, v_3, v_3, \dots, v_{2e-3}, v_{2e-3}, \alpha, 1, 0)] \mid v_1, v_3, \dots, v_{2e-3} \in \mathbb{F}_{q^2} \}.
$$

\nThe sets V_0 and V_1 induce a pair of disjoint cliques of size q^{e-1} , which means that the weight-distribution bound is tight for the eigenvalue $(q^{e-1} - 1)$ of $U(n, q)$ in the case of even q_{e-1} and $q_{e-1} = 0$.

Thank you for your attention!