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Eigenfunctions of graphs

Let Γ = (V,E) be a k-regular graph on n vertices and θ be an
eigenvalue of its adjacency matrix A. Let u = (u1, . . . , un)t be
an eigenvector of A corresponding to θ. Then u defines a
function fu : V 7→ R, which is called a θ-eigenfunction of Γ.

For an eigenfunction fu of Γ, the support is the set

Supp(fu) := {x ∈ V | fu(x) 6= 0}.



MS-problem
The following problem was first formulated in [1] (see also [2]
for the motivation and details).

Problem 1 (MS-problem)
Given a graph Γ and its eigenvalue θ, find the minimum
cardinality of the support of a θ-eigenfunction of Γ.

A θ-eigenfunction having the minimum cardinality of support is
called optimal.

Problem 2
Given a graph Γ and its eigenvalue θ, characterise optimal
θ-eigenfunctions of Γ.

[1] K. V. Vorobev, D. S. Krotov, Bounds for the size of a minimal 1-perfect

bitrade in a Hamming graph, Journal of Applied and Industrial

Mathematics 9(1) (2015) 141–146, translated from Discrete Analysis and

Operations Research 21(6) (2014) 3–10.

[2] E. Sotnikova, A. Valyuzhenich, Minimum supports of eigenfunctions of

graphs: a survey, https://arxiv.org/abs/2102.11142

https://arxiv.org/abs/2102.11142


A survey on Problem 2

Recently, Problem 2 was solved for several classes of graphs:

I all eigenvalues of Hamming graphs H(n, q) when q = 2 or
q > 4 and some eigenvalues of H(n, q) when q = 3, 4;

I all eigenvalues of Johnson graphs (asymptotically);

I the smallest eigenvalue of Hamming, Johnson and
Grassmann graphs;

I the largest non-principal eigenvalue of a Star graph Sn,
n ≥ 8;

I the largest non-principal eigenvalue of Doob graphs.



A survey on Problem 1

Excepting the results from the previous slide, Problem 1 was
solved for several more classes of graphs:

I both non-principal eigenvalues of Paley graphs of square
order;

I strongly regular bilinear forms graphs over a prime field.



Weight-distribution bound
Let Γ be a distance-regular graph of diameter D(Γ) with
intersection array (b0, b1, . . . , bD(Γ)−1; c1, c2, . . . , cD(Γ)).

For an eigenvalue θ of Γ, the following bound was proposed in
[3, Corollary 1].

Theorem (Weight-distribution bound)

A θ-eigenfunction f of Γ has at least
D(G)∑
i=0
|Wi| nonzeros, where

W0 = 1,

W1 = θ

and

Wi =
(θ − ai−1)Wi−1 − bi−2Wi−2

ci
.

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary

Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Known results when the weight-distribution bound is
tight

I the eigenvalue −1 of the Boolean Hamming graph of an
odd dimension and the minimum eigenvalue of an arbitrary
Hamming graph;

I both non-principal eigenvalues of Paley graphs of square
order;

I the minimum eigenvalue of Johnson graphs;

I the minimum eigenvalue of Grassmann graphs;

I the minimum eigenvalue of strongly regular bilinear forms
graphs over a prime field.



Tightness of the weight-distribution bound for the
smallest eigenvalue of a DRG

It was shown in [3] that, for the smallest eigenvalue of a
distance-regular graph Γ, the tightness of the
weight-distribution bound is equivalent to the existence of an
isometric bipartite distance-regular induced subgraph T0 ∪ T1,
where T0 and T1 are parts, such that an optimal eigenfunction,
up to multiplication by a non-zero constant, has the following
form:

f(x) =


1, if x ∈ T0;

−1, if x ∈ T1;

0, otherwise.

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary

Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Tightness of the weight-distribution bound for a
non-principal eigenvalue of an SRG

If Γ is a strongly regular graph with non-principal eigenvalues
r, s, where s < 0 < r, the following holds.

Lemma 1 ([3], Weight-distribution bound for SRG)
(1) An s-eigenfunction f of Γ has at least (−2s) nonzeros;
|Supp(f)| meets the bound if and only if there exists an induced
complete bipartite subgraph with parts T0, T1 of size −s;
(2) An r-eigenfunction f of Γ has at least 2(r + 1) nonzeros;
|Supp(f)| meets the bound if and only if there exists an induced
disjoint union of two cliques T0, T1 of size r + 1.

[3] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of q-ary

Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Tightness of the weight-distribution bound for Paley
graphs of square order

In [4], for Paley graphs P (q2), we showed the tightness of the
weight-distribution bound for both non-principal eigenvalues,
which are s = −1−q

2 and r = −1+q
2 .

Let β be a primitive element in Fq2 . Put ω := βq−1. Then
Q = 〈ω〉 is the subgroup of order q + 1 in F∗q2 .

Facts about Q:

I Q is an oval in the corresponding affine plane;

I Q is the kernel of the norm mapping N : F∗q2 7→ F∗q , which

means that Q = {γ ∈ F∗q2 | γ
q+1 = 1}, or, equivalently,

Q = {x+ yα | x, y ∈ Fq, x
2 − y2d = 1}, where d is a

non-square in F∗q and α2 = d.

[4] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On

eigenfunctions and maximal cliques of Paley graphs of square order, Finite

Fields and Their Applications 52 (2018) 361–369.



Tightness of the weight-distribution bound for Paley
graphs of square order

Let Q0 = 〈ω2〉 and Q1 = ωQ0.

Facts about Q:
I if q ≡ 1(4), then Q = Q0 ∪Q1 induces a complete bipartite

graph with parts Q0 and Q1;
I if q ≡ 3(4), then Q = Q0 ∪Q1 induces a pair of disjoint

cliques Q0 and Q1.

Corollary 1
The weight-distribution bound is tight for both non-principal
eigenvalues of Paley graphs of square order.

Knowing the structure of Q, we were also able to construct new
maximal cliques of the second largest known size in Paley
graphs of square order (see [4]).

[4] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On

eigenfunctions and maximal cliques of Paley graphs of square order, Finite

Fields and Their Applications 52 (2018) 361–369.



Generalised Paley graphs of square order; WDB for the
smallest eigenvalue

Let m > 1 be a positive integer. Let q be an odd prime power,
q ≡ 1 (2m). The m-Paley graph on Fq, denoted GP (q,m), is
the Cayley graph Cay(F+

q , (F∗q)m), where (F∗q)m is the set of
m-th powers in F∗q .

We consider the graphs GP (q2,m), where q is an odd prime
power and m divides q + 1; these graphs are strongly regular
and form a generalisation of Paley graphs of square order (the
usual Paley graphs of square order are just 2-Paley graphs of
square order).

The eigenvalues of GP (q2,m) are s = (− q+1
m ) and r = (m−1)q−1

m .

Given an odd prime power q and an integer m > 1 such that m
divides q + 1, a (− q+1

m )-eigenfunction of the generalised Paley

graph GP (q2,m) has at least 2(q+1)
m non-zeroes.



Structure of Q (I)
Let us divide Q into m parts

Q = Q0 ∪Q1 ∪ . . . ∪Qm−1,

where Q0 = 〈ωm〉, Q1 = ωQ0, . . . , Qm−1 = ωm−1Q0.

Lemma 2 (G., Shalaginov, 2021+)
Let q be a prime power and m be an integer such that m > 1,
m divides q + 1. The mapping γ 7→ γq−1 is a homomorphism
from F∗q2 to Q. Moreover, an element γ is an m-th power in F∗q2
if and only if γq−1 is an m-th power in Q.

Lemma 3 (G., Shalaginov, 2021+)
Let γ be an arbitrary element from Q, γ 6= 1. Then, for the
image of (γ − 1) under the action of the homomorphism, the
following equality holds:

(γ − 1)q−1 = −1

γ
.



Structure of Q (II)

The following theorem basically states that each of the sets
Q0, Q1 . . . , Qm−1 induces either a clique or an independent set,
and there are at most two cliques among them.

Moreover, the theorem states that for every independent set
Qi1 , there exists uniquely determined independent set Qi2

among Q0, Q1 . . . , Qm−1 such that there are all possible edges
between Qi1 and Qi2 and there are no edges between Qi1 and
Q \Qi2 .



Structure of Q (III)

Theorem 1 (G., Shalaginov, 2021+)
Given an odd prime power q and an integer m > 1, m divides
q + 1, the following statements hold for the subgraph of
GP (q2,m) induced by Q.
(1) If m divides q+1

2 and m is odd, then Q0 is a clique, and
Q1, . . . , Qm−1 are independent sets; moreover, for any distinct
i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1, there are all possible edges
between the sets Qi1 and Qi2 if

i1 + i2 ≡ 0 (mod m),

and there are no such edges if

i1 + i2 6≡ 0 (mod m).

In particular, Q1 ∪Qm−1, . . . , Qm−1
2
∪Qm+1

2
induce m−1

2

complete bipartite graphs.



Structure of Q (IV)

(2) If m divides q+1
2 and m is even, then Q0, Qm

2
are cliques,

and Q1, . . . , Qm
2
−1, Qm

2
+1, . . . , Qm−1 are independent sets;

moreover, for any distinct i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1,
there are all possible edges between the sets Qi1 and Qi2 if

i1 + i2 ≡ 0 (mod m) and {i1, i2} 6= {0,
m

2
}

and there are no such edges if

i1 + i2 6≡ 0 (mod m) or {i1, i2} = {0, m
2
}.

In particular, Q1 ∪Qm−1, . . . , Qm
2
−1 ∪Qm

2
+1 induce (m2 − 1)

complete bipartite graphs.



Structure of Q (V)

(3) If m does not divide q+1
2 , then m is even.

(3.1) If m
2 is odd, then Q0, Q1, . . . , Qm−1 are independent sets;

moreover, for any distinct i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1,
there are all possible edges between the sets Qi1 and Qi2 if

i1 + i2 ≡
m

2
(mod m),

and there are no such edges if

i1 + i2 6≡
m

2
(mod m).

In particular, if m = 2, Q = Q0 ∪Q1 is a complete bipartite
graph; if m ≥ 6,
Q0 ∪Qm

2
, . . . , Qm−2

4
∪Qm+2

4
, Qm

2
+1 ∪Qm−1, . . . , Q 3m−2

4
∪Q 3m+2

4

induce m
2 complete bipartite graphs.



Structure of Q (VI)

(3.2) If m
2 is even, then Qm

4
, Q 3m

4
are cliques, and

Q0, . . . , Qm
4
−1, Qm

4
+1, . . . , Q 3m

4
−1, Q 3m

4
+1, . . . , Qm−1 are

independent sets; moreover, for any distinct i1, i2 such that
0 ≤ i1 < i2 ≤ m− 1, there are all possible edges between the
sets Qi1 and Qi2 if

i1 + i2 ≡
m

2
(mod m) and {i1, i2} 6= {

m

2
,
3m

2
},

and there are no such edges if

i1 + i2 6≡
m

2
(mod m) or {i1, i2} = {m

2
,
3m

2
}.

In particular, if m = 4, Q0 ∪Q2 is a complete bipartite graph; if
m ≥ 8, then
Q0 ∪Qm

2
, . . . , Qm−4

4
∪Qm+4

4
, Qm

2
+1 ∪Qm−1, . . . , Q 3m−4

4
∪Q 3m+4

4

induce m−2
2 complete bipartite graphs.



Structure of Q (VII) and tightness of WDB for the
smallest eigenvalue of GP (q2,m)

Corollary 2
Let q be an odd prime power and m be an integer m ≥ 2, m
divides q + 1. Then, except for the case m = 2 and 2 divides
q+1

2 , there is at least one pair Qi1 , Qi2 among Q0, . . . , Qm−1

such that Qi1 ∪Qi2 induces a complete bipartite subgraph.

Corollary 3
Let q be an odd prime power and m be an integer m ≥ 2, m
divides q + 1. Then the weight-distribution bound is tight for
the eigenvalue (− q+1

m ) of GP (q2,m).



Strongly regular graphs related to polar spaces
I Affine polar graphs V O+(2e, q)
I Affine polar graphs V O−(2e, q)
I Orthogonal graphs O(2e+ 1, q), O+(2e, q) and O−(2e, q)
I Symplectic graphs Sp(2e, q)
I Unitary graphs U(n, q)

For each of these families of strongly regular graphs, we show
the tightness of the weight-distribution bound for the positive
non-principal eigenvalue r by constructing a pair of induced
isolated cliques of size r + 1.

[5] A. E. Brouwer, Affine polar graphs,

https://www.win.tue.nl/~aeb/graphs/VO.html

[6] A. E. Brouwer, Families of graphs,

https://www.win.tue.nl/~aeb/graphs/srghub.html

[7] A. E. Brouwer, Symplectic graphs,

https://www.win.tue.nl/~aeb/graphs/Sp.html

[8] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer-Verlag, New

York (2012).

https://www.win.tue.nl/~aeb/graphs/VO.html
https://www.win.tue.nl/~aeb/graphs/srghub.html
https://www.win.tue.nl/~aeb/graphs/Sp.html


Hyperbolic quadric

Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the
hyperbolic quadratic form

HQ(x) = x1x2 + x3x4 + . . .+ x2e−1x2e.

The set Q+ of zeroes of HQ is called the hyperbolic quadric,
where e is the maximal dimension of a subspace in Q+. A
generator of Q+ is a subspace of maximal dimension e in Q+.

Lemma 4 ([9, Theorem 7.130])
Given an (e− 1)-dimensional subspace W of Q+, there are
precisely two generators that contain W .

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in

Mathematics, Birkhäuser Basel (2016).



Affine polar graphs V O+(2e, q) (I)

Denote by V O+(2e, q) the graph on V with two vectors x, y
being adjacent if and only if Q(x− y) = 0. The graph
V O+(2e, q) is known as an affine polar graph.

Lemma 5
The graph V O+(2e, q) is a vertex-transitive strongly regular
graph with parameters

v = q2e

k = (qe−1 + 1)(qe − 1)

λ = q(qe−2 + 1)(qe−1 − 1) + q − 2

µ = qe−1(qe−1 + 1)

(1)

and eigenvalues r = qe − qe−1 − 1, s = −qe−1 − 1.



Affine polar graphs V O+(2e, q) (II)

Note that V O+(2e, q) is isomorphic to the graph defined on the
set of all (2× e)-matrices over Fq of the form(

x1 x3 . . . x2e−1

x2 x4 . . . x2e

)
,

where two matrices are adjacent if and only if the scalar product
of the first and the second rows of their difference is equal to 0.

Lemma 6
There is a one-to-one correspondence between cosets of
generators of Q+ and maximal cliques in V O+(2e, q).

Lemma 7
Every maximal clique in V O+(2e, q) is a qe−1-regular qe-clique.



An optimal (qe − qe−1 − 1)-eigenfunction of V O+(2e, q)
In view of Lemmas 1 and 5, a (qe − qe−1 − 1)-eigenfunction of
V O+(2e, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size (qe− qe−1), and the cardinality of support is 2(qe− qe−1).
Take the (e− 1)-dimensional subspace

W =

(
∗ . . . ∗ 0
0 . . . 0 0

)
,

where the size of matrices is 2× e. According to Lemma 4, the
subspace W is contained in exactly two generators: these are

W0 =

(
∗ . . . ∗ ∗
0 . . . 0 0

)
and W1 =

(
∗ . . . ∗ 0
0 . . . 0 ∗

)
.

The cliques W0 and W1 are qe−1-regular and have qe−1 vertices
in common. Thus, the sets W0 \W and W1 \W induce a pair of
disjoint cliques of size (qe − qe−1), which means that the
weight-distribution bound is tight for the eigenvalue
(qe − qe−1 − 1).



Elliptic quadric

Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the elliptic
quadratic form

EQ(x) = p(x1, x2) + x3x4 + . . .+ x2e−1x2e,

where p(x1, x2) is an irreducible homogeneous polynomial of
degree 2 (it means that p(x1, x2) = ax2

1 + bx1x2 + cx2
2, a 6= 0,

c 6= 0).

The set Q− of zeroes of EQ is called the elliptic quadric, where
e− 1 is the maximal dimension of a subspace in Q−. A
generator of Q− is a subspace of maximal dimension e− 1 in
Q− (see [9]).

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in

Mathematics, Birkhäuser Basel (2016).



Affine polar graphs V O−(2e, q) (I)

Denote by V O−(2e, q) the graph on V with two vectors x, y
being adjacent if and only if Q(x− y) = 0. The graph
V O−(2e, q) is known as an affine polar graph.

Lemma 8
The graph V O−(2e, q) is a vertex-transitive strongly regular
graph with parameters

v = q2e

k = (qe−1 − 1)(qe + 1)

λ = q(qe−2 − 1)(qe−1 + 1) + q − 2

µ = qe−1(qe−1 − 1)

(2)

and eigenvalues r = qe−1 − 1, s = −qe + qe−1 − 1.



Affine polar graphs V O−(2e, q) (II)

Note that V O−(2e, q) is isomorphic to the graph defined on the
set of all (2× e)-matrices over Fq of the form(

x1 x3 . . . x2e−1

x2 x4 . . . x2e

)
, (3)

where two matrices are adjacent if and only if the modified
scalar product (for the first column we take p(x1, x2) instead of
x1x2) of the first and the second rows of their difference is equal
to 0.



An optimal (qe−1 − 1)-eigenfunction of V O−(2e, q)

In view of Lemmas 1 and 8, a (qe−1 − 1)-eigenfunction of
V O−(2e, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size qe−1, and the cardinality of support is 2qe−1.
Consider the generator

U =

(
0 ∗ . . . ∗
0 0 . . . 0

)
and its additive shift(

1 0 . . . 0
0 0 . . . 0

)
+ U =

(
1 ∗ . . . ∗
0 0 . . . 0

)
,

which are cliques of size qe−1. It is easy to see that there are no
edges between these two cliques, which means that the
weight-distribution bound is tight for the eigenvalue (qe−1 − 1)
of V O−(2e, q).



Parabolic quadric

Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the
parabolic quadratic form

PQ(x) = x2
0 + x1x2 + . . .+ x2e−1x2e.

The form PQ defines a bilinear form

βPQ(x, y) = PQ(x+ y)− PQ(x)− PQ(y).

A vector x ∈ V is called isotropic if PQ(x) = 0. A subspace in
V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in

Mathematics, Birkhäuser Basel (2016).



Orthogonal graphs O(2e + 1, q) (I)

Denote by O(2e+ 1, q) the graph whose vertices are all isotropic
(w.r.t. to the parabolic quadric) 1-dimensional subspaces on V
with two vertices [x], [y] being adjacent whenever one of the
following three equivalent conditions holds:

I βPQ(x, y) = 0;

I PQ(x+ y) = 0;

I the 2-dimensional subspace including [x] and [y] is
isotropic.



Orthogonal graphs O(2e + 1, q) (II)

Lemma 9
The graph O(2e+ 1, q) is a vertex-transitive strongly regular
graph with parameters

v =
q2e − 1

q − 1

k =
q(q2e−2 − 1)

q − 1

λ =
q2(q2e−4 − 1)

q − 1
+ q − 1

µ =
k

q
= λ+ 2

(4)

and eigenvalues r = qe−1 − 1, s = −qe−1 − 1.



An optimal (qe−1 − 1)-eigenfunction of O(2e + 1, q)

In view of Lemmas 1 and 9, a (qe−1 − 1)-eigenfunction of
O(2e+ 1, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size qe−1, and the cardinality of support is 2qe−1.

Consider the sets of vertices

V0 = {[(0, 1, 0, v3, 0, . . . , v2e−1, 0)] | v3, . . . , v2e−1,∈ Fq},

V1 = {[(0, 0, 1, v3, 0, . . . , v2e−1, 0)] | v3, . . . , v2e−1,∈ Fq}.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−1,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−1 − 1) of O(2e+ 1, q).



Hyperbolic quadric (revisited)

Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the
hyperbolic quadratic form

HQ(x) = x1x2 + x3x4 + . . .+ x2e−1x2e.

The form HQ defines a bilinear form

βHQ(x, y) = HQ(x+ y)−HQ(x)−HQ(y).

A vector x ∈ V is called isotropic if HQ(x) = 0. A subspace in
V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in

Mathematics, Birkhäuser Basel (2016).



Elliptic quadric (revisited)
Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the elliptic
quadratic form

EQ(x) = p(x1, x2) + x3x4 + . . .+ x2e−1x2e,

where p(x1, x2) is an irreducible homogeneous polynomial of
degree 2 (it means that p(x1, x2) = ax2

1 + bx1x2 + cx2
2, a 6= 0,

c 6= 0).

The form EQ defines a bilinear form

βEQ(x, y) = EQ(x+ y)− EQ(x)− EQ(y).

A vector x ∈ V is called isotropic if EQ(x) = 0. A subspace in
V is called isotropic if every vector in this subspace is isotropic.

[9] B. De Bruyn, An Introduction to Incidence Geometry, Frontiers in

Mathematics, Birkhäuser Basel (2016).



Orthogonal graphs Oε(2e, q) (I)

Denote by Oε(2e, q) (ε = 1 or −1) the graph whose vertices are
all isotropic (w.r.t. to the hyperbolic quadric if ε = 1 and
elliptic quadric if ε = −1) 1-dimensional subspaces on V with
two vertices [x], [y] being adjacent whenever one of the following
three equivalent conditions holds:

I βHQ(x, y) = 0 (respectively, βEQ(x, y) = 0);

I HQ(x+ y) = 0 (respectively, EQ(x+ y) = 0);

I the 2-dimensional subspace including [x] and [y] is
isotropic.



Orthogonal graphs Oε(2e, q) (II)

Lemma 10
The graph Oε(2e, q) is a vertex-transitive strongly regular graph
with parameters

v =
q2e − 1

q − 1
+ εqe−1

k =
q(q2e−2 − 1)

q − 1
+ εqe−1

λ = k − q2e−3 − 1

µ =
k

q

(5)

and eigenvalues θ1 = εqe−1 − 1, θ2 = −εqe−2 − 1.



An optimal (qe−1 − 1)-eigenfunction of O+(2e, q)

In view of Lemmas 1 and 10, a (qe−1 − 1)-eigenfunction of
O+(2e, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size qe−1, and the cardinality of support is 2qe−1.

Consider the sets of vertices

V0 = {[(1, 0, v3, 0, . . . , v2e−1, 0)] | v3, . . . , v2e−1,∈ Fq},

V1 = {[(0, 1, v3, 0, . . . , v2e−1, 0)] | v3, . . . , v2e−1,∈ Fq}.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−1,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−1 − 1) of O+(2e, q).



An optimal (qe−2 − 1)-eigenfunction of O−(2e, q)

In view of Lemmas 1 and 10, a (qe−2 − 1)-eigenfunction of
O−(2e, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size qe−2, and the cardinality of support is 2qe−2.

Consider the sets of vertices

V0 = {[(0, 0, 1, 0, v5, 0, . . . , v2e−1, 0)] | v5, . . . , v2e−1,∈ Fq},

V1 = {[(0, 0, 0, 1, v5, 0, . . . , v2e−1, 0)] | v5, . . . , v2e−1,∈ Fq}.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−2,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−2 − 1) of O−(2e, q).



Symplectic graphs SP (2e, q) (I)
Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power. For any nonzero v ∈ V ,
denote by [v] the 1-dimensional subspace generated by v.
Let

K =

(
0 I(e)

−I(e) 0

)
.

The symplectic graph Sp(2e, q) relative to K over Fq is the
graph with the set of 1-dimensional subspaces of V as its vertex
set and the adjacency defined by

[v] ∼ [u] if and only if vKut = 0 for 1-dimensional subspaces [v], [u].

Equivalently, for arbitrary non-zero vectors
v = (v1, . . . , ve, ve+1, . . . , v2e) and u = (u1, . . . , ue, ue+1, . . . , u2e),
the vertices [v] and [u] are adjacent if and only if

(v1ue+1 + . . .+ veu2e)− (ve+1u1 + . . .+ v2eue) = 0.



Symplectic graphs SP (2e, q) (II)

Lemma 11
The graph SP (2e, q) is a vertex-transitive strongly regular
graph with parameters

v =
q2e − 1

q − 1

k =
q(q2e−2 − 1)

q − 1

λ =
q2(q2e−4 − 1)

q − 1
+ q − 1

µ =
k

q
= λ+ 2

(6)

and eigenvalues r = qe−1 − 1, s = −qe−1 − 1.



An optimal (qe−1 − 1)-eigenfunction of SP (2e, q)

In view of Lemmas 1 and 11, a (qe−1 − 1)-eigenfunction of
SP (2e, q) whose cardinality of support meets the
weight-distribution bound is given by a pair of disjoint cliques
of size qe−1, and the cardinality of support is 2qe−1.

V0 = {[(0, v2, . . . , ve, 1, 0, . . . , 0)] | v2, . . . , ve ∈ Fq},

V1 = {[(1, v2, . . . , ve, 1, 0, . . . , 0)] | v2, . . . , ve ∈ Fq}.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−1,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−1 − 1) of SP (2e, q).



Hermitian form

Let V be an n-dimensional vector space over a finite field Fq,
where q is a square. The Hermitian form on V is the mapping

H(x, y) = x1y
√
q

1 + . . .+ xny
√
q

n .

A vector x ∈ V is called isotropic if

H(x, x) = x
√
q+1

1 + . . .+ x
√
q+1

n = 0.

A subspace in V is called isotropic if every vector in this
subspace is isotropic.



Unitary graphs U(n, q)

Denote by U(n, q) the graph whose vertices are all isotropic
1-dimensional subspaces on V with two vertices [x], [y] being
adjacent whenever one of the following two equivalent
conditions holds:

I H(x, y) = 0;

I the 2-dimensional subspace including [x] and [y] is
isotropic.



Unitary graphs U(2e, q)

Lemma 12
The graph U(2e, q) is a vertex-transitive strongly regular graph
with parameters

v =
(qe − 1)(qe−

1
2 + 1)

q − 1

k =
q(qe−1 − 1)(qe−

3
2 + 1)

q − 1

λ =
q2(qe−2 − 1)(qe−

5
2 + 1)

q − 1
+ q − 1

µ =
k

q

(7)

and eigenvalues r = qe−1 − 1, s = −qe−
3
2 − 1.



Unitary graphs U(2e + 1, q)

Lemma 13
The graph U(2e+ 1, q) is a vertex-transitive strongly regular
graph with parameters

v =
(qe − 1)(qe+

1
2 + 1)

q − 1

k =
q(qe−1 − 1)(qe−

1
2 + 1)

q − 1

λ =
q2(qe−2 − 1)(qe−

3
2 + 1)

q − 1
+ q − 1

µ =
k

q

(8)

and eigenvalues r = qe−1 − 1, s = −qe−
1
2 − 1.



An optimal (qe−1 − 1)-eigenfunction of U(n, q) in the
case of odd q

Let β be a primitive element in Fq. Put γ = β
√
q−1

2 , which
means that γ

√
q+1 = −1.

If n = 2e, consider the sets of vertices

V0 = {[(v1, v1γ, v3, v3γ, . . . , v2e−3, v2e−3γ, γ, 1)]},

V1 = {[(v1, v1γ, v3, v3γ, . . . , v2e−3, v2e−3γ,−γ, 1)]};

if n = 2e+ 1, consider the sets of vertices

V0 = {[(v1, v1γ, v3, v3γ, . . . , v2e−3, v2e−3γ, γ, 1, 0)]},

V1 = {[(v1, v1γ, v3, v3γ, . . . , v2e−3, v2e−3γ,−γ, 1, 0)]},

where in all cases v1, v3, . . . , v2e−3 run over Fq independently.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−1,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−1 − 1) of U(n, q) in the case of odd q.



An optimal (qe−1 − 1)-eigenfunction of U(n, q) in the
case of even q

The norm mapping F∗q 7→ F∗√q is a homomorphism defined by

the rule δ −→ δ
√
q+1. Note that there are exactly

√
q + 1

elements with norm 1. Let α be an element with norm 1, α 6= 1.

If n = 2e, consider the sets of vertices

V0 = {[(v1, v1, v3, v3, . . . , v2e−3, v2e−3, 1, 1)] | v1, v3, . . . , v2e−3 ∈ Fq2},

V1 = {[(v1, v1, v3, v3 . . . , v2e−3, v2e−3, α, 1)] | v1, v3, . . . , v2e−3 ∈ Fq2};

if n = 2e+ 1, consider the sets of vertices

V0 = {[(v1, v1, v3, v3, . . . , v2e−3, v2e−3, 1, 1, 0)] | v1, v3, . . . , v2e−3 ∈ Fq2},

V1 = {[(v1, v1, v3, v3, . . . , v2e−3, v2e−3, α, 1, 0)] | v1, v3, . . . , v2e−3 ∈ Fq2}.

The sets V0 and V1 induce a pair of disjoint cliques of size qe−1,
which means that the weight-distribution bound is tight for the
eigenvalue (qe−1 − 1) of U(n, q) in the case of even q.



Thank you for your attention!


