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Basic definitions

Let p be an odd prime, q a power of p. Let Fq be the finite field
with q elements, F+

q be its additive group, and F∗
q = Fq \ {0} be

its multiplicative group.

Given an abelian group G and a connection set S ⊂ G \ {0}
with S = −S, the Cayley graph Cay(G,S) is the undirected
graph whose vertices are elements of G, such that two vertices g
and h are adjacent if and only if g − h ∈ S.

A clique in a graph X is a subset of vertices of X such that any
two of them are adjacent. For a graph X, the clique number of
X, denoted ω(X), is the size of a maximum clique of X.



EKR properties

Given any graph X for which we can describe its canonical
cliques (that is, typically cliques with large size and simple
structure), we can ask whether X has any of the following three
related Erdős-Ko-Rado (EKR) properties:

▶ EKR property: the clique number of X equals the size of
canonical cliques.

▶ EKR-module property: the characteristic vector of each
maximum clique in X is a Q-linear combination of
characteristic vectors of canonical cliques in X.

▶ strict-EKR property: each maximum clique in X is a
canonical clique.



EKR-type results

The classical Erdős-Ko-Rado theorem [EKR61] classified
maximum intersecting families of k-element subsets of
{1, 2, ..., n} when n ≥ 2k + 1.

Since then, EKR-type results refer to understanding maximum
intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book
[GM15] by Godsil and Meagher provides an excellent survey on
the modern algebraic approaches to proving EKR-type results
for permutations, set systems, orthogonal arrays, and so on.

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems

of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



EKR-module property (I)

The EKR-type problems related to a transitive permutation
group G can be reformulated in terms of the EKR properties of
cocliques of the derangement graph Γ(G), or equivalently, the
cliques of the complement. Once we define canonical cocliques
(or cliques), we can discuss the EKR properties of G after
identifying G with Γ(G).

The EKR-module property was first formally defined by
Meagher [M19] in this context: a permutation group G
naturally acts on the vector space W spanned by the
characteristic vectors of canonical cliques, which makes W a
G-module.

[M19] K. Meagher, An Erdős-Ko-Rado theorem for the group PSU(3, q),

Des. Codes Cryptogr. 87 (2019), no. 4, 717–744.



EKR-module property (II)

Each finite 2-transitive group has the EKR property [MSP16].

Meagher and Sin [MS21] recently showed that all finite
2-transitive groups have the EKR-module property. However,
the strict-EKR property does not hold for permutations groups
in general; recently, Meagher and Razafimahatratra [MR21]
have shown that the general linear group GL(2, q) is such a
counterexample.

[MR21] K. Meagher and A. S. Razafimahatratra, Erdős-Ko-Rado results for

the general linear group, the special linear group and the affine general

linear group, arXiv:2110.08972

[MS21] K. Meagher and P. Sin, All 2-transitive groups have the EKR-module

property, J. Combin. Theory Ser. A 177 (2021), Paper No. 105322, 21.

[MST16] K. Meagher, P. Spiga, and P. H. Tiep, An Erdős-Ko-Rado theorem

for finite 2-transitive groups, European J. Combin. 55 (2016), 100–118.



EKR-module property (III)

We remark that our results are of similar flavour, although in
our context of Peisert-type graphs, the corresponding vector
space W does not carry a natural module structure. However,
we remark that the definition of EKR-module property (even
for permutation groups) does not need the additional G-module
structure.



Module method

In general, the module method (see [AM15, Section 4]) refers to
the strategy of proving that a graph Γ satisfies the strict-EKR
property in two steps:

▶ show that Γ satisfies the EKR-module property

▶ show that EKR-module property implies the strict-EKR
property

As an example of the module method, [AM15, Theorem 4.5]
provides a sufficient condition for the second step above for
2-transitive permutation groups.

[AM15] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some

2-transitive groups, Ann. Comb. 19 (2015), no. 4, 621–640.



Blokhuis’ result in terms of ERK properties
Consider the Paley graph Pq2 which is the Cayley graph defined
on the additive group of Fq2 , with the connection set being the
set of squares in F∗

q2 . Clearly, the subfield Fq forms a clique.
Moreover, aFq + b also forms a clique for each a, b ∈ Fq2 where a
is a nonzero square. Such square translates of Fq are the
canonical cliques [GM15, Section 5.9] in this example. Blokhuis
proved that these are precisely the maximum cliques in Pq2 .

Theorem 1 ([B84, Theorem])
Let q be an odd prime power. The Paley graph Pq2 satisfies the
strict-EKR property.

Godsil and Meagher [GM15, Section 5.9] call Theorem 1 the
EKR theorem for Paley graphs.

[B84] A. Blokhuis, On subsets of GF (q2) with square differences, Indag.

Math. 46 (1984) 369–372.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Extensions and generalizations of Blokhuis’ result
Extensions and generalizations of Theorem 1 can be found in
[BF91],[S99],[M09],[AY21] and [AY21a]. A Fourier analytic
approach was recently proposed in [Y21, Section 4.4].

[BF91] A. A. Bruen and J. C. Fisher, The Jamison method in Galois

geometries, Des. Codes Cryptogr. 1 (1991), no. 3, 199–205.

[S99] P. Sziklai, On subsets of GF (q2) with dth power differences, Discrete

Math. 208/209 (1999), 547–555.

[M09] N. Mullin, Self-complementary arc-transitive graphs and their

imposters (2009). Master’s thesis, University of Waterloo.

[AY21] S. Asgarli and C. H. Yip, Rigidity of maximum cliques in

pseudo-Paley graphs from unions of cyclotomic classes, arXiv:2110.07176

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522

[Y21] C. H. Yip, Gauss sums and the maximum cliques in generalized Paley

graphs of square order, Funct. Approx. Comment. Math. (2021)



Peisert-type graphs
While we have at least three different proofs of Theorem 1, all
known proofs rely heavily on advanced tools such as the
polynomial method over finite fields.

Instead, in this work, we follow a purely combinatorial
approach. Although we are not able to give a simple proof of
Theorem 1, we prove that a weaker version of Theorem 1
extends to a larger family of Cayley graphs, namely
Peisert-type graphs.

Let q be an odd prime power. Let S ⊂ F∗
q2 be a union of m ≤ q

cosets of F∗
q in F∗

q2 such that F∗
q ⊂ S, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a

Peisert-type graph of type (m, q). A clique in X is called a
canonical clique if it is the image of the subfield Fq under an
affine transformation.



Some important examples of Peisert-type graphs

The following families of Cayley graphs are Peisert-type graphs
(see [AY21a, Lemma 2.10]):

▶ Paley graphs of square order;

▶ Peisert graph with order q2, where q ≡ 3 (mod 4);

▶ Generalised Paley graphs GP (q2, d), where d | (q + 1) and
d > 1;

▶ Generalised Peisert graphs GP ∗(q2, d), where d | (q + 1)
and d is even.

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522



Peisert-type graphs satisfy the EKR-module property

Blokhuis’ theorem already implies that Paley graphs of square
order possess the EKR-module property. In their book, Godsil
and Meagher ask for an algebraic proof of this statement
[GM15, Problem 16.5.1], which motivates our work.

Our main result answers this problem for a larger family of
Cayley graphs:

Theorem 2 ([9, Theorem 1.3])
Peisert-type graphs satisfy the EKR-module property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Orthogonal arrays and their block graphs

An orthogonal array OA(m,n) is an m× n2 array with entries
from an n-element set T with the property that the columns of
any 2× n2 subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted
XOA(m,n), is defined to be the graph whose vertices are columns
of the orthogonal array, where two columns are adjacent if there
exists a row in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i
in row r. These sets are cliques, and since each element of the
n-element set T occurs exactly n times in each row, the size of
Sr,i is n for all i and r. These cliques are called the canonical
cliques in the block graph XOA(m,n). A simple combinatorial
argument shows that the block graph of an orthogonal array is
strongly regular.



A sufficient condition for the block graph of an
orthogonal array to have strict-EKR property

Theorem 3 ([GM16, Corollary 5.5.3], [AGLY22, Theorem 2.8])
Let X = XOA(m,n) be the block graph of an orthogonal array
OA(m,n) with n > (m− 1)2. Then X has the strict-EKR
property: the only maximum cliques in X are the columns that
have entry i in row r for some 1 ≤ i ≤ n and 1 ≤ r ≤ m.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Connection between Peisert-type graphs and orthogonal
arrays

The main ingredient in the proof of Theorem 2 is the following
connection between Peisert-type graphs and orthogonal arrays,
which is of independent interest.

Theorem 4 ([AGLY22, Theorem 1.4])
Each Peisert-type graph of type (m, q) can be realized as the
block graph of an orthogonal array OA(m, q). Moreover, there
is a one-to-one correspondence between canonical cliques in the
block graph and canonical cliques in a given Peisert-type graph.

We then were able to find two explicit eigenbases for the
positive non-principal eigenvalue of the block graph of an
orthogonal array, which led us to the result of Theorem 2 (more
generally, it led us to the establishing of EKR-module property
for the block graphs of orthogonal arrays).

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



We remark that the idea of viewing certain Cayley graphs
geometrically has appeared in the past; see for example [M09,
Construction 5.2.1] and [AY21a, Section 4.2] for related
discussion. However, Paley graphs and block graphs of
orthogonal arrays are often treated independently; see for
example [GR01, Chapter 5], and [AFMNSR21, Section 5].
Theorem 4 is the first to make an explicit connection between
Peisert-type graphs and orthogonal arrays, and allows us to
treat them in a uniform manner.

[M09] N. Mullin, Self-complementary arc-transitive graphs and their

imposters (2009). Master’s thesis, University of Waterloo.

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522

[GR01] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in

Mathematics, vol. 207, Springer-Verlag, New York, 2001.

[AFMNSR21] M. Adm, S. Fallat, K. Meagher, S. Nasserasr, M. N. Shirazi,

and A. S. Razafimahatratra, Weakly Hadamard diagonalizable graphs,

Linear Algebra Appl. 610 (2021), 86–119



Strongly regular graphs due to Brouwer, Wilson, and
Xiang that generalise Peisert-type graphs

It is known that the block graph of an orthogonal array is
strongly regular. Thus, Theorem 4 also implies the same
conclusion for the Peisert-type graphs. We remark that
Peisert-type graphs form a subfamily of a well-known family of
strongly regular Cayley graphs defined on finite fields due to
Brouwer, Wilson, and Xiang [12]: the connection set is a union
of semi-primitive cyclotomic classes of Fq2 . However, their proof
heavily relied on the fact we can compute semi-primitive Gauss
sums explicitly using Stickelberger’s theorem and its variants;
see [BWX99, Proposition 1] and [AY21, Corollary 3.6]. Theorem
4 can be proved using a purely combinatorial argument, thus
giving an elementary proof of the corollary below.

[AY21] S. Asgarli and C. H. Yip, Rigidity of maximum cliques in

pseudo-Paley graphs from unions of cyclotomic classes, arXiv:2110.07176

[BWX99] A. E. Brouwer, R. M. Wilson, and Q. Xiang, Cyclotomy and

strongly regular graphs, J. Algebraic Combin. 10 (1999), no. 1, 25–28.



Peisert-type graphs are strongly regular

Corollary 1 ([AGLY22, Corollary 1.5])
A Peisert-type graph of type (m, q) is strongly regular with
parameters (q2,m(q− 1), (m− 1)(m− 2) + q− 2,m(m− 1)) and
eigenvalues k = m(q − 1) (with multiplicity 1), −m (with
multiplicity q2 − 1− k) and q −m (with multiplicity k). In
particular, a Peisert-type graph of type ( q+1

2 , q) is a
pseudo-Paley graph.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



On Peisert-type graphs with strict-EKR property (I)

Corollary 2 ([AGLY22, Corollary 1.8])
If q > (m− 1)2, then all Peisert-type graphs of type (m, q)
satisfy the strict-EKR property. In particular, if d > q+1√

q+1 and

d | (q+1), then the d-Paley graph GP (q2, d) has the strict-EKR
property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



On Peisert-type graphs with strict-EKR property (II)

It is natural to examine when a Peisert-type graph X enjoys the
strict-EKR property. While we do not have a general answer to
this problem, we exhibit an infinite family of Peisert-type
graphs which fail to satisfy the strict-EKR property. The
following theorem shows that the condition q > (m− 1)2 in
Corollary 2 is sharp when q is a square.

Theorem 5 ([AGLY22, Theorem 1.9])
Let q be an odd prime power which is not a prime. Then there
exists a Peisert-type graph X of order q2 such that X fails to
have the strict-EKR property. In particular, if q is a square,
then there exists a Peisert-type graph X of type (

√
q + 1, q)

which fails to have the strict-EKR property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



Hadamard matrices and Hadamard diagonalisable
graphs

Recall that a Hadamard matrix is a square matrix with entries
1 or −1 such that any two columns are mutually orthogonal.

Given an undirected graph G, the Laplacian matrix of G is
defined as L(G) = D(G)−A(G), where D(G) is the diagonal
matrix of vertex degrees of G and A(G) is the adjacency matrix
of G.

A graph G is called Hadamard diagonalisable if the Laplacian
matrix of G can be diagonalised by a Hadamard matrix
[BFK11].

[BFK11] S. Barik, S. Fallat, and S. Kirkland, On Hadamard diagonalizable

graphs, Linear Algebra Appl. 435 (2011), no. 8, 1885–1902.



Weakly Hadamard matrices and weakly Hadamard
diagonalisable graphs

Recently, Adm et al. [AFMNSR21] studied a larger class of
graphs which contains some families of strongly regular graphs.
In order to present this result, they introduced a broader class
of matrices which include Hadamard matrices.

A square matrix is called weakly Hadamard if it satisfies the
following two conditions:

▶ The entries of the matrix are from the set {−1, 0, 1}.
▶ There is an ordering of the columns of the matrix so that

the non-consecutive columns are orthogonal.

A graph is weakly Hadamard diagonalisable if its Laplacian
matrix can be diagonalised with a weakly Hadamard matrix.

[AFMNSR21] M. Adm, S. Fallat, K. Meagher, S. Nasserasr, M. N. Shirazi,

and A. S. Razafimahatratra, Weakly Hadamard diagonalizable graphs,

Linear Algebra Appl. 610 (2021), 86–119.



A sufficient condition of the block graph of an
orthogonal array to be weakly Hadamard diagonalisable

A large class of block graphs of orthogonal arrays satisfy the
definition of weakly Hadamard diagonalisable graphs according
to the following theorem.

Theorem 6 ([AFMNSR21, Theorem 5.19])
Let O = OA(m,n) be an orthogonal array that can be extended
to an orthogonal array with n+ 1 rows. Then its block graph
XO is weakly Hadamard diagonalisable.

[AFMNSR21] M. Adm, S. Fallat, K. Meagher, S. Nasserasr, M. N. Shirazi,

and A. S. Razafimahatratra, Weakly Hadamard diagonalizable graphs,

Linear Algebra Appl. 610 (2021), 86–119.



Peisert-type graphs are weakly Hadamard diagonalisable

Paley graphs are known to have a close connection with Paley’s
construction of Hadamard matrices [P33]. In [AFMNSR21,
Theorem 5.9], it was shown that Paley graphs of square order
are weakly Hadamard diagonalisable.

Our following theorem generalises their result.

Theorem 7 ([AGLY22, Theorem 1.6])
Peisert-type graphs are weakly Hadamard diagonalisable.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100

[AFMNSR21] M. Adm, S. Fallat, K. Meagher, S. Nasserasr, M. N. Shirazi,

and A. S. Razafimahatratra, Weakly Hadamard diagonalizable graphs,

Linear Algebra Appl. 610 (2021), 86–119

[P33] R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys., Mass.

Inst. Techn. 12 (1933), 311–320.



Chromatic number and ERK theorem

The chromatic number of a graph X, denoted χ(X), is the
smallest number of colours needed to colour the vertices of X so
that no two adjacent vertices share the same colour.

We remark that one can prove the original EKR theorem using
the (fractional) chromatic number of Kneser graphs [GR01,
Theorem 7.8.1].

It is known that the chromatic number is lower bounded by the
clique number, that is, ω(X) ≤ χ(X).

[GR01] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in

Mathematics, vol. 207, Springer-Verlag, New York, 2001.



On chromatic and clique numbers of generalised Paley
graphs

Broere, Döman, and Ridley [BDR88] showed that if d > 1 and
d | (q + 1), then both the chromatic number and the clique
number of the generalized Paley graph GP (q2, d) is q.

The converse of this result was proved by Schneider and Silva
[SS15, Theorem 4.7].

A stronger converse was proved recently in [Y21].

[BDR88] I. Broere, D. Dőman, and J. N. Ridley, The clique numbers and

chromatic numbers of certain Paley graphs, Quaestiones Math. 11 (1988),

no. 1, 91–93.

[SS15] C. Schneider and A. C. Silva, Cliques and colorings in generalized

Paley graphs and an approach to synchronization, J. Algebra Appl. 14

(2015), no. 6, 1550088, 13.

[Y21] C. H. Yip, Gauss sums and the maximum cliques in generalized Paley

graphs of square order, Funct. Approx. Comment. Math. (2021)



Chromatic and clique numbers of Peisert-type graphs
graphs

Our following theorem computes both the chromatic and the
clique number of all Peisert-type graphs, hence extending the
first result on generalised Paley graphs since GP (q2, d) with
d | (q + 1) is a Peisert-type graph.

Theorem 8 ([AGLY22, Theorem 1.7])
Let X be a Peisert-type graph of order q2. Then
ω(X) = χ(X) = q.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



Open problems (I)

Let X be a Peisert-type graph, and W be the vector space
generated by the characteristic vectors of the canonical cliques
in X. As we mentioned above, there is no obvious choice of a
non-trivial group action on W . Finding such a group action,
already in the case of the Paley graph, may give new insights on
the EKR theorems.

Problem 1
Does there exist a 2-transitive permutation group G that acts
linearly on the vector space W generated by the characteristic
vectors of canonical cliques in the Paley graph Pq2?

Another problem, motivated by the counterexamples found in
Theorem 5, is the following.

Problem 2
Characterize Peisert-type graphs with the strict-EKR property.



Open problems (II)

Peisert-type graphs of order q2 can be analogously defined in
the case when q is a power of 2.

Problem 3
Investigate EKR properties of Peisert-type graphs in
characteristic 2.

Note that we already have some progress on Problem 3.



Thank you for your attention!


