Extremal Peisert-type graphs without strict-EKR property

> Sergey Goryainov (Hebei Normal University)

based on joint work in progress with Chi Hoi Yip

The 8th Workshop "Algebraic Graph Theory and its Applications"

March 1st, 2023

A D F A 目 F A E F A E F A Q Q

Let p be a prime and q a power of p. Let \mathbb{F}_q be the finite field with q elements, \mathbb{F}_q^+ be its additive group, and $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ be its multiplicative group.

Given an abelian group G and a connection set $S \subset G \setminus \{0\}$ with S = -S, the Cayley graph $\operatorname{Cay}(G, S)$ is the undirected graph whose vertices are the elements of G, such that two vertices g and h are adjacent if and only if $g - h \in S$.

Peisert-type graphs

Let $S \subset \mathbb{F}_{q^2}^*$ be a union of $m \leq q$ cosets of \mathbb{F}_q^* in $\mathbb{F}_{q^2}^*$, that is, $S = c_1 \mathbb{F}_q^* \cup c_2 \mathbb{F}_q^* \cup \cdots \cup c_m \mathbb{F}_q^*.$

Then the Cayley graph $X = \text{Cay}(\mathbb{F}_{q^2}^+, S)$ is said to be a Peisert-type graph of type (m, q).

Comments on the definition of Peisert-type graphs

While Peisert-type graphs were introduced formally recently [AY22], [AGLY22], they can date back to the construction of cyclotomic strongly regular graphs due to Brouwer, Wilson, and Xiang [BWX99] around 20 years ago.

The definition of Peisert-type graphs is motivated by the well-studied Paley graphs and Peisert graphs, which are only defined in finite fields with odd characteristic. However, the definition of Peisert-type graphs naturally extends to finite fields with characteristic 2.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, *The EKR-module property of pseudo-Paley graphs of square order*, Electron. J. Combin. **29** (2022), no. 4, #P4.33.

[AY22] S. Asgarli, C. H. Yip, Van Lint-MacWilliams' conjecture and maximum cliques in Cayley graphs over finite fields, J. Combin. Theory Ser. A 192 (2022), Paper No. 105667, 23 pp.

[BWX99] A. E. Brouwer, R. M. Wilson, and Q. Xiang, *Cyclotomy and strongly regular graphs*, J. Algebraic Combin. **10**(1),25–28, 1999.

Intersections of the the class of Peisert-type graphs with some other classes

- ▶ Paley graphs $P(q^2)$ of square order are Peisert-type graphs;
- Peisert graphs P^{*}(q²), where q ≡ 3 (mod 4), are Peisert-type graphs (not all Peisert graphs are Peisert-type graphs);
- Generalised Paley graphs $GP(q^2, d)$, where $d \mid (q+1)$ and d > 1 (not all generalised Paley graphs are Peisert-type graphs);
- Generalised Peisert graphs $GP^*(q^2, d)$, where $d \mid (q+1)$ and d is even (not all generalised Peisert graphs are Peisert-type graphs).

Delsarte-Hoffman bound

For the clique number $\omega(X)$ of a strongly regular graph X, the Delsarte-Hoffman bound holds:

$$\omega(\Gamma) \le 1 - \frac{k}{\theta_{\min}},$$

where θ_{\min} is the smallest eigenvalue of X.

A clique in a strongly regular graph is a **Delsarte clique** if its size is equal to the Delsarte-Hoffman bound.

うして ふゆ く は く は く む く し く

Canonical cliques in Peisert-type graphs

Peisert-type graphs are strongly regular graphs.

Desarte-Hoffman bound implies that the clique number is at most q.

From the decomposition of the connection set into \mathbb{F}_q^* -cosets, it is clear that translates of $c_1\mathbb{F}_q, c_2\mathbb{F}_q, \ldots, c_m\mathbb{F}_q$ are Delsarte (in particular, maximum) cliques in X. These cliques are known as the canonical cliques in X and we say X has the strict-EKR property if all maximum cliques in X are canonical.

Such a terminology is reminiscent to the classical Erdős-Ko-Rado (EKR) theorem, where all maximum families of k-element subsets of $\{1, 2, \ldots, n\}$ are canonical intersecting whenever $n \ge 2k + 1$. There are lots of combinatorial objects where an analogue of the EKR theorem holds; we refer to the book by Godsil and Meagher [GM15] for a general discussion on EKR-type results.

[GM15] C. D. Godsil, K. Meagher, *Erdös-Ko-Rado Theorems: Algebraic Approaches*, Cambridge University Press (2015).

Subspace structure of Delsarte cliques in Peisert-type graphs

Theorem 1 ([AY22, Theorem 1.2])

Let X be a Peisert-type graph of type (m,q), where q is a power of an odd prime p and $m \leq \frac{q+1}{2}$. Then any maximum clique in X containing 0 is an \mathbb{F}_p -subspace of \mathbb{F}_{q^2} .

[AY22] S. Asgarli, C. H. Yip, Van Lint-MacWilliams' conjecture and maximum cliques in Cayley graphs over finite fields, J. Combin. Theory Ser. A 192 (2022), Paper No. 105667, 23 pp.

うして ふゆ く は く は く む く し く

https://doi.org/10.1016/j.jcta.2022.105667

Extremal Peisert-type graphs without strict-EKR property

- Let X be a Peisert-type graph of type (m, q) without strict EKR-property. We say that X is extremal if all Peisert-type graphs of type (m 1, q) have the strict-EKR property.
- Theorem 2 ([AGLY22])

If $q > (m-1)^2$, then all Peisert-type graphs of type (m,q) have the strict-EKR property. Moreover, when q is a square, there exists an extremal Peisert-type graph of type $(\sqrt{q}+1,q)$ without the strict-EKR property.

However, an explicit construction of extremal Peisert-type graphs of type $(\sqrt{q} + 1, q)$ without the strict-EKR property was not given in [AGLY22].

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, *The EKR-module property of pseudo-Paley graphs of square order*, Electron. J. Combin. **29** (2022), no. 4, #P4.33.

Main problem

Problem 1 Determine all extremal Peisert-type graphs without strict-EKR property.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

In this talk, we investigate extremal Peisert-type graphs of type (m, q) and consider the following cases:

- \blacktriangleright q is prime
- \blacktriangleright q is not prime
 - a bound B(q) for m and its tightness
 - \blacktriangleright uniqueness of the extremal graphs in case when q is a square
 - uniqueness of the extremal graphs in case when q is a cube, but not a square

▶ non-uniqueness of the extremal graphs in case $q = 2^5$

We also discuss some related problems.

The set of directions of a subsets of points of an affine plane

Let U be a subset of AG(2, q); the set of directions determined by U is defined to be

 $D(U) := \{ [a-c:b-d]: (a,b), (c,d) \in U, (a,b) \neq (c,d) \} \subset \mathrm{PG}(1,q).$

The theory of directions has been developed by Rédei [R73], Szőnyi [S99], and many other authors. It is of particular interest to estimate |D(U)|.

[R73] L. Rédei, Lacunary polynomials over finite fields, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the German by I. Földes.

[S99] T. Szőnyi, On the number of directions determined by a set of points in an affine Galois plane, J. Combin. Theory Ser. A, 74(1):141–146, 1996. Summary of the results on the size of D(U); q is prime

Theorem 3

Let U be a subset of AG(2, p) with |U| = p.

- (Rédei [R73]). If the points in U are not all collinear, then U determines at least ^{p+3}/₂ directions.
- (Lovász and Schrijver [LS83]) If U determines exactly (p+3)/2 directions, then U is affinely equivalent to the set $\{(x, x^{(p+1)/2}) : x \in \mathbb{F}_p\}$.
- (Gács [G03]) If U determines more than $\frac{p+3}{2}$ directions, then it determines at least $\lfloor \frac{2p+1}{3} \rfloor$ directions.

[R73] L. Rédei, Lacunary polynomials over finite fields, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. Translated from the German by I. Földes.

[LS83] L. Lovász, A. Schrijver, Remarks on a theorem of Rédei, Studia Sci. Math. Hungar., 16 (1983) 449–454.

[G03] A. Gács, On a generalization of Rédei's theorem. Combinatorica, 23(4):585–598, 2003. Exstremal Peisert-type graphs without strict EKR-property; q is prime

Corollary 1 (G., Yip, 2023+)

If q is prime and $q \ge 7$, then there exists a unique (up to isomorphism) Peisert-type graph of type $(\frac{q+3}{2}, q)$ that fails to have the strict-EKR property.

うして ふゆ く は く は く む く し く

Bound for extremal Peisert-type graphs without strict-EKR property

Theorem 4 (G., Yip, 2023+)

Let $q = p^n$ with n > 1. Let k be the largest proper divisor of n. Then any Peisert-type graph of type (m,q) has the strict-EKR property provided that $m \le p^{m-k}$. Moreover, in a Peisert-type graph of type $(p^{n-k} + 1, q)$, each maximum clique containing 0 is a \mathbb{F}_{p^k} -subspace in \mathbb{F}_{q^2} .

うして ふゆ く は く は く む く し く

Let $B(q) = p^{n-k}$.

Graphs $Y_{q,n}$

Let $q = r^n$, where r is a prime power and n is prime. Assume $\mathbb{F}_{q^2} = \{x + y\beta : x, y \in \mathbb{F}_q\}$, where β is a root of an irreducible polynomial $f(t) = t^2 - d \in \mathbb{F}_q[t]$.

Considering \mathbb{F}_{r^n} as a *n*-dimensional \mathbb{F}_r -vector space underlying the affine space $\operatorname{AG}(n, r)$, let H be a an additive coset of a (n-1)-dimensional subspace in \mathbb{F}_{r^n} (equivalently, let H be a hyperplane in $\operatorname{AG}(n, r)$). Note that $|H| = r^{n-1}$.

Let

$$S(H) = \mathbb{F}_q^* \cup \bigcup_{h \in H} (h + \beta) \mathbb{F}_q^*.$$

Let $Y_{q,n}(H)$ be the Peisert-type graph of type $(r^{n-1}+1, r^n)$ defined by the generating set S(H).

Proposition 1 (G., Yip, 2023+)

For any two hyperplanes H_1, H_2 in AG(n, r), the graphs $Y_{q,n}(H_1)$ and $Y_{q,n}(H_2)$ are isomorphic. We write $Y_{q,n}$ instead of $Y_{q,n}(H)$.

Given a prime power q, how many graphs $Y_{q,n}$ have we defined?

Let $q = p^m$, where p is prime and m is an integer, $m \ge 2$.

Let d be the number of different prime divisors of m. We have defined exactly d graphs of $Y_{q,n}$. Indeed, let k_1, \ldots, k_d be the divisors of m such that

$$m/k_1,\ldots,m/k_d$$

are different primes and

$$m/k_1 < \ldots < m/k_d.$$

Put $n_i = m/k_i$ and $r_i = p^{k_i}$. Then, for any $i \in \{1, \ldots, d\}$, $q = r_i^{n_i}$ holds and we have defined the graphs $Y_{q,n_1}, \ldots, Y_{q,n_d}$.

Problem 2

Are these graphs minimal in terms of not having strict-EKR property?

Graphs $Y_{q,n}$ are Peisert-type graphs without strict-EKR property

Let $q = r^n$, where r is a prime power and n is prime. Consider the graph $Y_{q,n}$.

Theorem 5 (G., Yip, 2023+)

The following statements hold. (1) The graph $Y_{q,n}$ is a Peisert-type graph of type $(r^{n-1}+1,r^n)$. (2) The graph $Y_{q,n}$ fails to have the strict-EKR property.

うして ふゆ く は く は く む く し く

Conjecture 1

The graph $Y_{q,n}$ has exactly $(r^n - 1)/(r - 1)$ non-canonical cliques containing 0.

A classification of extremal Peisert-type graphs without strict-EKR property

Theorem 6 (G., Yip, 2023+)

Let $q = p^m$, where p is prime and m is an integer $m \ge 2$. Let k_1, \ldots, k_d be the divisors of m such that

 $m/k_1,\ldots,m/k_d$

are different primes and

$$m/k_1 < \ldots < m/k_d.$$

Let $n_1 = m/k_1$ and $r_1 = p^{k_1}$. Then the following statements hold.

(1) Y_{q,n_1} is an extremal Peisert-type graph without strict-EKR property.

(2) If $n_1 \in \{2, 3\}$, then Y_{q,n_1} is the only (up to isomorphism) extremal Peisert-type graph without strict-EKR property. ・ロト ・ 母 ト ・ 目 ト ・ 目 ・ うへぐ If $q = 2^5$, then there exists exactly two non-isomorphic extremal graphs without strict-EKR property ($Y_{32,5}$ and one more).

Conjecture 2

If $n_1 \geq 5$, then there exist at least two non-isomorphic extremal graphs without strict-EKR property.

A D F A 目 F A E F A E F A Q Q

Graphs $Y_{q,2}(\mathbb{F}_r)$ and X_q

Let $q = r^2$. Note that \mathbb{F}_r is a hyperplane (a line) in AG(2, r). Consider the extremal Peisert-type graph $Y_{q,2}(\mathbb{F}_r)$ of type (r+1,q). We have put $H = \mathbb{F}_r$ in the definition of $Y_{q,2}(H)$. Let $Q = \{\gamma \in \mathbb{F}_q^* \mid \gamma^{r+1} = 1\}$. Let $S = \bigcup_{\delta \in Q} (\delta + \beta) \mathbb{F}_q^*$.

Let X_q be the Peisert-type graph of type (r+1,q) defined by the generating set S.

Theorem 7 (G., Yip, 2023+)

The graphs $Y_{q,2}(\mathbb{F}_r)$ and X_q are isomorphic.

Proof.

The generating set $S(\mathbb{F}_r)$ can be obtained from S by multiplication (from the left) by any non-degenerate matrix $\begin{pmatrix} \sigma & \sigma^r \\ 1 & 1 \end{pmatrix}$, where $\sigma \neq \sigma^r$.

The graph X_q

The graph X_q has some interesting properties, and we devote the rest of the talk to this graph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A non-canonical clique in X_q

Let ε be a primitive element of \mathbb{F}_q . Consider a 2-dimensional $\mathbb{F}_{\sqrt{q}}$ -subspace in \mathbb{F}_{q^2} :

$$\begin{split} C_q &= (1+\beta)\mathbb{F}_{\sqrt{q}} + (\varepsilon^{\sqrt{q}} + \varepsilon\beta)\mathbb{F}_{\sqrt{q}} = \\ &= \{(1+\beta)a + (\varepsilon^{\sqrt{q}} + \varepsilon\beta)b \mid a, b \in \mathbb{F}_{\sqrt{q}}\} = \\ &= \{a + b\varepsilon^{\sqrt{q}} + (a + b\varepsilon)\beta \mid a, b \in \mathbb{F}_{\sqrt{q}}\} = \\ &= \{(a + b\varepsilon)^{\sqrt{q}} + (a + b\varepsilon)\beta \mid a, b \in \mathbb{F}_{\sqrt{q}}\} = \\ &= \{\gamma^{\sqrt{q}} + \gamma\beta \mid \gamma \in \mathbb{F}_q\} = \\ &= \{\gamma(\gamma^{\sqrt{q}-1} + \beta) \mid \gamma \in \mathbb{F}_q\} \subset S \cup \{0\}. \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

All non-canonical cliques in X_q

Proposition 2 (G., Yip, 2023+)

The subspace C_q induces a non-canonical clique in X_q . Moreover, the intersection of any canonical clique in X_q containing 0 and C_q has exactly $\sqrt{q} - 1$ nonzero elements (these elements are given by the elements $\gamma \in \mathbb{F}_q^*$ lying in the same coset of $\mathbb{F}_{\sqrt{q}}^*$ in \mathbb{F}_q^* .

Corollary 2 (G., Yip, 2023+)

For any $i \in \{0, 1, \ldots, \sqrt{q}\}$, the set $\varepsilon^i C_q$ induces a non-canonical clique in X_q , and, for any $i, j \in \{0, 1, \ldots, \sqrt{q}\}$ such that $i \neq j$, we have $\varepsilon^i C_q \cap \varepsilon^j C_q = \{0\}$.

Proposition 3 (G., Yip, 2023+)

The $\sqrt{q} + 1$ non-canonical cliques $\{C_q, \varepsilon C_q, \varepsilon^2 C_q, \dots, \varepsilon^{\sqrt{q}} C_q\}$ are the only non-canonical cliques in X_q containing 0. Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e \geq 2$ and q is a prime power, provided with the hyperbolic quadratic form

$$HQ(x) = x_1 x_2 + x_3 x_4 + \ldots + x_{2e-1} x_{2e}.$$

The set HQ^+ of zeroes of HQ is called the hyperbolic quadric, where e is the maximal dimension of a subspace in Q^+ .

うして ふゆ く は く は く む く し く

Affine polar graphs $VO^+(2e,q)$

Denote by $VO^+(2e, q)$ the graph on V with two vectors x, y being adjacent if and only if HQ(x - y) = 0. The graph $VO^+(2e, q)$ is known as an affine polar graph.

Lemma 1 ([BV22])

The graph $VO^+(2e,q)$ is a vertex-transitive strongly regular graph with parameters

$$v = q^{2e}$$

$$k = (q^{e-1} + 1)(q^{e} - 1)$$

$$\lambda = q(q^{e-2} + 1)(q^{e-1} - 1) + q - 2$$

$$\mu = q^{e-1}(q^{e-1} + 1)$$
(1)

and eigenvalues $r = q^e - q^{e-1} - 1$, $s = -q^{e-1} - 1$.

[BV22] A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs, Cambridge University Press, Cambridge (2022).

X_q is isomorphic to $VO^+(4,\sqrt{q})$

Let V(n,r) be a *n*-dimensional vector space over the finite field \mathbb{F}_r , where $n \geq 2$ and *r* is a prime power. Let $f(x_1, x_2, \ldots, x_n) : V(n, r) \mapsto \mathbb{F}_r$ be a quadratic form on V(n, r). Define a graph G_f on the set of vectors of V(n, r) as follows:

for any $u, v \in V(n, r), u \sim v$ if any only if f(u - v) = 0.

Two quadratic forms $f_1(x_1, x_2, ..., x_n)$ and $f_2(y_1, y_2, ..., y_n)$ are said to be equivalent if there exists an invertible matrix $B \in GL(n, r)$ such that $f_1(Bx) = f_2(y)$.

Lemma 2

Let f_1 and f_2 be two equivalent quadratic forms. Then the graphs G_{f_1} and G_{f_2} are isomorphic.

Corollary 3 (G., Yip, 2023+)

The graphs X_q and $VO^+(4,\sqrt{q})$ are isomorphic.

An induced complete bipartite subgraph in X_q

The fact that X_q is isomorphic to $VO^+(4, \sqrt{q})$ establishes a connection with the talk of Rhys Evans on extremal eigenfunctions of polar and affine polar graphs.

Let $T_0 = Q$ and $T_1 = Q\beta$. Note that T_0 and T_1 are subsets of the lines with slopes 1 and β in AG(2,q). These lines do not intersect with S and thus are cocliques in X_q , which means that T_0 and T_1 are cocliques.

Let $\gamma_1 \in T_0$ and $\gamma_2 \beta \in T_1$ be two arbitrary elements from the cocliques T_0 and T_1 . Consider their difference and take into account that Q is a subgroup of order $\sqrt{q} + 1$ in \mathbb{F}_q^* and -Q = Q:

$$\gamma_2\beta - \gamma_1 = \gamma_2 + \gamma_1'\beta = \gamma_1'(\gamma_2(\gamma_1')^{-1} + \beta) = \gamma_1'(\gamma_2' + \beta) \in S,$$

where γ'_1, γ'_2 are uniquely determined elements from Q. This means that $T_0 \cup T_1$ induces a complete bipartite subgraph in X_q with parts T_0 and T_1 of size $\sqrt{q} + 1$. WDB is tight for the negative eigenvalue of $X_q \simeq VO^+(4,\sqrt{q})$

Define a function $f: \mathbb{F}_{q^2} \mapsto \mathbb{R}$ by the following rule:

$$f(\gamma) = \begin{cases} 1, & \gamma \in T_0; \\ -1, & \gamma \in T_1; \\ 0, & \gamma \notin T_0 \cup T_1. \end{cases}$$

Proposition 4 (G., Yip, 2023+)

The function f is a $(-\sqrt{q}-1)$ -eigenfunction of X_q whose cardinality of support is $2(\sqrt{q}+1)$.

Corollary 4 (G., Yip, 2023+)

The weight-distribution bound is tight for the negative non-principal eigenvalue $-\sqrt{q} - 1$ of $X_q \simeq VO^+(4, \sqrt{q})$.

Problem 3

Characterise $(-\sqrt{q}-1)$ -eigenfunctions of X_q whose cardinality of support meets the weight-distribution bound $2(\sqrt{q}+1)$.

Orthogonal arrays and their block graphs

- An orthogonal array OA(m, n) is an $m \times n^2$ array with entries from an *n*-element set W with the property that the columns of any $2 \times n^2$ subarray consist of all n^2 possible pairs.
- The block graph of an orthogonal array OA(m, n), denoted $D_{OA(m,n)}$, is defined to be the graph whose vertices are columns of the orthogonal array, where two columns are adjacent if there exists a row in which they have the same entry.
- Let $S_{r,i}$ be the set of columns of OA(m, n) that have the entry i in row r. These sets are cliques, and since each element of the n-element set W occurs exactly n times in each row, the size of $S_{r,i}$ is n for all i and r. These cliques are called the canonical cliques in the block graph $D_{OA(m,n)}$.
- A simple combinatorial argument shows that the block graph of an orthogonal array is strongly regular (see [GM15, Theorem 5.5.1]).
- [GM15] C. D. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic Approaches, Cambridge University Press (2015).

Peisert-type graphs are block graphs of orthogonal arrays

In [AGLY22, Theorem 4], we showed that each Peisert-type graph of type (m, q) can be realised as the block graph of an orthogonal array OA(m, q). Moreover, there is a one-to-one correspondence between canonical cliques in the block graph and canonical cliques in a given Peisert-type graph. Note that the size of the canonical cliques in the block graphs of orthogonal arrays meets the Delsarte bound.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, *The EKR-module* property of pseudo-Paley graphs of square order, Electron. J. Combin. **29** (2022), no. 4, #P4.33.

A bound for block graphs of orthogonal arrays

Lemma 3 ([GM15, Corollary 5.5.3])

If OA(m, n) is an orthogonal array with $n > (m - 1)^2$, then the only cliques of size n in $D_{OA(m,n)}$ are canonical cliques.

Let m-1 be a prime power; then there exists an OA(m, m-1)and, using MacNeish's construction [GM15, p. 98], it is possible to construct an $OA(m, (m-1)^2)$ from this array.

This larger orthogonal array has OA(m, m-1) as a subarray, and thus the graph $D_{OA(m,(m-1)^2)}$ has the graph $D_{OA(m,m-1)}$ as an induced subgraph. Since this subgraph is isomorphic to $K_{(m-1)^2}$, it is a clique of size $(m-1)^2$ in $D_{OA(m,(m-1)^2)}$ that is not canonical.

[GM15] C. D. Godsil, K. Meagher, *Erdös-Ko-Rado Theorems: Algebraic Approaches*, Cambridge University Press (2015).

Subarray structure of the non-canonical cliques in X_q

Problem 4 ([GM15, Problem 16.4.2])

Assume that $OA(m, (m-1)^2)$ is an orthogonal array and its orthogonal array graph has non-canonical cliques of size $(m-1)^2$. Do these non-canonical cliques form subarrays that are isomorphic to orthogonal arrays with entries from $\{1, \ldots, m-1\}$?

Theorem 8 (G., Yip, 2023+)

The non-canonical cliques in X_q form subarrays that are isomorphic to orthogonal arrays with entries from $\{1, \ldots, \sqrt{q}\}$.

[GM15] C. D. Godsil, K. Meagher, *Erdös-Ko-Rado Theorems: Algebraic Approaches*, Cambridge University Press (2015).

Thank you for your attention!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで