On strictly Neumaier graphs

Sergey Goryainov

Shanghai Jiao Tong University & Krasovskii Insitute of Mathematics and Mechanics

based on joint work in progress with

Rhys Evans and Dmitry Panasenko

The 27th British Combinatorial Conference

The University of Birmingham

August 1st, 2019

Definitions

A k-regular graph on v vertices is called edge-regular with parameters (v, k, λ) if every pair of non-adjacent vertices has λ common neighbours.

An edge-regular graph with parameters (v, k, λ) is called strongly regular with parameters (v, k, λ, μ) if every pair of distinct non-adjacent vertices has μ common neighbours.

A clique in a regular graph is called m-regular if every vertex that doesn't belong to the clique is adjacent to precisely m vertices from the clique. For an m-regular clique, the number m is called the m-exus.

A question by Neumaier

For the clique number $\omega(\Gamma)$ of a strongly regular graph Γ , the Delsarte-Hoffman bound holds:

$$\omega(\Gamma) \le 1 - \frac{k}{\theta_{\min}},$$

where θ_{\min} is the smallest eigenvalue of Γ .

A clique in a strongly regular graph is regular if and only if it has $1 - \frac{k}{\theta_{\min}}$ vertices; such a clique is called a Delsarte clique.

In 1981, Neumaier proved [1] that an edge-regular graph which is vertex-transitive, edge-transitive, and has a regular clique is strongly regular.

Neumaier then asked: "Is it true that every edge-regular graph with a regular clique is strongly regular?"

[1] A. Neumaier, Regular Cliques in graphs and Special $1\frac{1}{2}$ -designs, Finite Geometries and Designs, London Mathematical Society Lecture Note Series, 245–259 (1981).

Neumaier graphs

A non-complete edge-regular graph with parameters (v, k, λ) containing an m-regular s-clique is said to be a Neumaier graph with parameters $(v, k, \lambda; m, s)$.

A Neumaier graph that is not strongly regular is said to be a strictly Neumaier graph.

For a Neumaier graph, a spread is a partition of the vertex set into regular cliques.

Outline

- 1. A construction of strictly Neumaier graphs with 1-regular cliques by Greaves & Koolen and new questions;
- Four more strictly Neumaier graphs on 24 vertices found in the list of small Cayley-Deza graphs and 'another' construction of strictly Neumaier graphs with 1-regular cliques by Greaves & Koolen;
- 3. A generalisation of Greaves & Koolen's constructions
- 4. New strictly Neumaier graphs on 28, 40 and 65 vertices.
- 5. Determination of the smallest strictly Neumaier graph and a construction of strictly Neumaier graphs with 2^{i} -regular cliques, for every positive integer i, by Evans, G. & Panasenko;
- 6. A variation of the Godsil-McKay switching and its application to strictly Neumaier graphs
- 7. Some directions for further investigation

The first construction of strictly Neumaier graphs

In [2], Greaves and Koolen constructed an infinite family of strictly Neumaier graphs with 1-regular cliques.

For positive integers ℓ , m and an odd prime power q, consider the group $G_{\ell,m,q} := \mathbb{Z}_{\ell} \oplus \mathbb{Z}_2^m \oplus \mathbb{F}_q$. Put

$$S_0 := \{(x, y, 0) \mid x \in \mathbb{Z}_{\ell}, y \in \mathbb{Z}_2^m, (x, y) \neq (0, 0)\}$$

Let $\pi: \mathbb{Z}_2^m \setminus \{0\} \to \{0, \dots, 2m-2\}$ be a bijection and ρ be a primitive element of \mathbb{F}_q .

For each $y \in \mathbb{Z}_2^m \setminus \{0\}$, define

$$S_{y,\pi} := \{(0, y, \rho^j) \mid \pi(y) \equiv j \pmod{2^m - 1}\}$$

Consider the parametrised Cayley graph $Cay(G_{\ell,m,q},S(\pi))$, where

$$S(\pi) := S_0 \cup \bigcup_{y \in \mathbb{Z}_n^m \setminus \{0\}} S_{y,\pi}$$

[2] G. R. W. Greaves, J. H. Koolen, Edge-regular graphs with regular cliques, Europ. J. Combin., 71, 194–201 (2018).

The first construction of strictly Neumaier graphs

Let q = 2nr + 1 for some positive integer r. For each $i \in \{0, ..., n-1\}$, define the cyclotomic class

$$C_q^n(i) := \{ \rho^{nj+i} \mid j \in 0, \dots, 2r-1 \}.$$

For $a, b \in \{0, \dots, n-1\}$, define the cyclotomic number

$$c_q^n(a,b) := |C_q^n(a) + 1 \cap C_q^n(b)|.$$

Put $c := c_q^n(a, b)$ and $\ell := (1 + c)/2$.

Theorem ([2, Theorem 3.6, Corollary 4.4])

Let $q \equiv 1 \pmod{6}$, c be odd and $\pi : \mathbb{Z}_2^2 \setminus \{0\} \to \{0, 1, 2\}$ be a bijection. Then $Cay(G_{\ell,2,q}, S(\pi))$ is a strictly Neumaier graph with parameters $(4\ell q, 4\ell - 2 + q, 4\ell - 2; 1, 4\ell)$.

[2] G. R. W. Greaves, J. H. Koolen, *Edge-regular graphs with regular cliques*, Europ. J. Combin., 71, 194–201 (2018).

Notes on the first construction

▶ Set $q := 7^a$, where $a \not\equiv 0 \pmod{3}$. Then $Cay(G_{\ell,2,q}, S(\pi))$ is a strictly Neumaier graph with parameters

$$(4\ell q, 4\ell - 2 + q, 4\ell - 2; 1, 4\ell).$$

In particular, if a = 1, then we have a strictly Neumaier graph with parameters (28, 9, 2; 1, 4). This graph is the smallest example from [2].

- ► $Cay(G_{\ell,2,q}, S(\pi))$ has a spread of size q given by the cosets of the subgroup $\{(x,y,0) \mid x \in \mathbb{Z}_{\ell}, y \in \mathbb{Z}_2^m\}$.
- [2] G. R. W. Greaves, J. H. Koolen, *Edge-regular graphs with regular cliques*, Europ. J. Combin., 71, 194–201 (2018).

Four strictly Neumaier graphs on 24 vertices

Gavrilyuk and Goryainov then searched for examples in a collection of known Cayley-Deza graphs [3] and found four more strictly Neumaier graphs with parameters (24, 8, 2; 1, 4).

In [4], Greaves and Koolen found 'another' infinite family of strictly Neumaier graphs, which contains one of the four graphs on 24 vertices.

[3] S. V. Goryainov, L. V. Shalaginov, Cayley-Deza graphs with fewer than 60 vertices, Siberian Electronic Mathematical Reports, 11, 268–310 (2014) (in Russian).

[4] G. R. W. Greaves, J. H. Koolen, Another construction of edge-regular graphs with regular cliques, Discrete Mathematics, to appear, https://doi.org/10.1016/j.disc.2018.09.032

Antipodal distance-regular graphs

A graph Γ of diameter d is called distance-regular if, for any two vertices $x, y \in V(\Gamma)$, the number of vertices at distance i from x and distance j from y depends only on i, j, and the distance from x to y. It is clear that distance regular graphs are edge-regular.

A distance-regular graph Γ of diameter d is called a-antipodal if the relation of being at distance d or distance 0 is an equivalence relation on the vertices of Γ with equivalence classes of size a.

The second construction of strictly Neumaier graphs

Let Γ be an a-antipodal distance-regular graph of diameter 3 with edge-regular parameters (v, k, λ) such that a is a proper divisor of $\lambda + 2$.

Put $t = \frac{\lambda+2}{a}$ and take t disjoint copies $\Gamma^{(1)}, \dots, \Gamma^{(t)}$ of Γ .

For every antipodal class H in Γ , take the corresponding antipodal classes $H^{(1)}, \ldots, H^{(t)}$ in $\Gamma^{(1)}, \ldots, \Gamma^{(t)}$, respectively, and connect any two vertices from $H^{(1)} \cup \ldots \cup H^{(t)}$ to form a 1-regular clique of size at.

Denote by $F_t(\Gamma)$ the resulting graph.

Theorem ([4])

The graph $F_t(\Gamma)$ is a strictly Neumaier graph having parameters $(tv, k+at-1, \lambda; 1, at)$ and containing a spread.

[4] G. R. W. Greaves, J. H. Koolen, $Another\ construction\ of\ edge-regular\ graphs\ with\ regular\ cliques,$ Discrete Mathematics, to appear,

https://doi.org/10.1016/j.disc.2018.09.032

Notes on the second construction

- ▶ In particular, if Γ is the icosahedron, then $a=2, \lambda=2$, t=2 and $F_2(\Gamma)$ is one of the four strictly Neumaier graphs with parameters (24,8,2;1,4) found in [3].
- ▶ The other three graphs can be obtained in a similar way by choosing an appropriate matching of the antipodal classes in the two copies of the icosahedrons.
- [3] S. V. Goryainov, L. V. Shalaginov, Cayley-Deza graphs with fewer than 60 vertices, Siberian Electronic Mathematical Reports, 11, 268–310 (2014) (in Russian).

A generalisation of the first and the second costructions

Let $\Gamma^{(1)}, \ldots, \Gamma^{(t)}$ edge-regular graphs with parameters (v, k, λ) that admit a partition into perfect 1-codes of size a, where a is a proper divisor of $\lambda + 2$ and $t = \frac{\lambda + 2}{a}$;

For any $j \in \{1, ..., t\}$, let $H_1^{(j)}, ..., H_{\frac{v}{a}}^{(j)}$ denote the perfect 1-codes that partition the vertex set of $\Gamma^{(j)}$.

Let $\Pi = (\pi_2, \dots, \pi_t)$ be a (t-1)-tuple of permutations from $Sym(\{1, \dots, \frac{v}{a}\})$.

- 1. Take the disjoint union of the graphs $\Gamma^{(1)}, \dots, \Gamma^{(t)}$.
- 2. For any $i \in \{1, \dots, \frac{v}{a}\}$, connect any two vertices from $H_i^{(1)} \cup H_{\pi_2(i)}^{(2)} \cup \ldots \cup H_{\pi_t(i)}^{(t)}$ to form a 1-regular clique of size at.
- 3. Denote by $F_{\Pi}(\Gamma^{(1)}, \dots, \Gamma^{(t)})$ the resulting graph, which is a strictly Neumaier graph whose vertex set has been partitioned into 1-regular cliques.

Notes on the generalisation

- Non-isomorphic Taylor graphs with the same parameters give many new examples in the case $t \geq 2$.
- ▶ The four strictly Neumaier graphs on 24 vertices from [3] are given by a pair of icosahedrons, and the only difference between them is the choice of the permutation that matches the antipodal classes.
- ▶ The generalised construction covers both constructions from [2] and [4] (the cases t = 1 and $t \ge 2$, respectively).
- For t = 1 we can construct three new strictly Neumaier graphs with parameters (28, 9, 2; 1, 4), (40, 12, 2; 1, 4) and (65, 16, 3; 1, 5).
- [2] G. R. W. Greaves, J. H. Koolen, *Edge-regular graphs with regular cliques*, Europ. J. Combin., 71, 194–201 (2018).
- [3] S. V. Goryainov, L. V. Shalaginov, Cayley-Deza graphs with fewer than 60 vertices, Sibirskie Elektronnye Matematicheskie Izvestiya, 11, 268–310 (2014).
- [4] G. R. W. Greaves, J. H. Koolen, Another construction of edge-regular graphs with regular cliques, Discrete Mathematics, to appear,

Triangular grid

Perfect 1-code

Partition into perfect 1-codes

Four balls

Quotient 1: isomorphic to the known (28,9,2;1,4)-graph

Quotient 2: new strictly Neumaier graph, (28,9,2;1,4)

A pair of disjoint dodecahedrons

The first type of adjacent vertices

The second type of adjacent vertices

Perfect 1-code in the (40,9,2)-edge-regular graph

Partition into perfect codes gives a (40,12,2;1,4)-graph

New strictly Neumaier graph, (65,16,3;1,5)

The element 2 has order 12 modulo 65.

Consider the circulant $Cay(\mathbb{Z}_{65}, \{1, 2, 2^2, \dots, 2^{11}\})$, which is edge-regular with parameters (65, 12, 3).

The cosets of the subgroup of order 5 form a partition into perfect 1-codes.

Finally, we obtain a strictly Neumaier graph with parameters (65, 16, 3; 1, 5).

Strictly Neumaier graphs with 2^{i} -regular cliques

In [5], Evans, Goryainov and Panasenko found a strictly Neumaier graph containing a 2^i -regular clique for every positive integer i.

The smallest graph in this family has parameters (16,9,4;2,4).

It was also proved that this graph on 16 vertices is the smallest strictly Neumaier graph (w.r.t the number of vertices).

[5] R. J. Evans, S. V. Goryainov, D. I. Panasenko, The smallest strictly Neumaier graph and its generalisations, The Electronic Journal of Combinatorics, 26(2) (2019), P2.29.

Affine polar graph

Let V be a (2e)-dimensional vector space over a finite field \mathbb{F}_q , where $e \geq 2$ and q is a prime power, provided with the hyperbolic quadratic form $Q(x) = x_1x_2 + x_3x_4 + \ldots + x_{2e-1}x_{2e}$.

The set Q^+ of zeroes of Q is called the hyperbolic quadric, where e is the maximal dimension of a subspace in Q^+ . A generator of Q^+ is a subspace of maximal dimension e in Q^+ .

Denote by $VO^+(2e,q)$ the graph on V with two vectors x,y being adjacent iff Q(x-y)=0.

The graph $VO^+(2e,q)$ is known to be a vertex transitive strongly regular graph with parameters

$$v=q^{2e}, k=(q^{e-1}+1)(q^e-1),$$

$$\lambda=q(q^{e-2}+1)(q^{e-1}-1)+q-2, \mu=q^{e-1}(q^{e-1}+1).$$

Affine polar graph

Note that $VO^+(2e,q)$ is isomorphic to the graph defined on the set of all $(2 \times e)$ -matrices over \mathbb{F}_q

$$\left\{ \left(\begin{array}{ccc} x_1 & x_3 & \dots & x_{2e-1} \\ x_2 & x_4 & \dots & x_{2e} \end{array} \right) \right\},\,$$

where two matrices are adjacent iff the scalar product of the first and the second rows of their difference is equal to 0.

A spread in $VO^+(2e,q)$ is a set of q^e disjoint maximal cliques that correspond to all cosets of a generator.

The smallest strictly Neumaier graph

Put e = 2 and q = 2, and consider the 1-dimensional subspace

$$W = \left(\begin{array}{cc} * & 0 \\ 0 & 0 \end{array}\right).$$

The subspace W is contained in the two generators

$$W_1 = \begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$$
 and $W_2 = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$.

Take the vector

$$v = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

and consider the cosets

$$v + W_1 = \begin{pmatrix} * & * \\ 1 & 0 \end{pmatrix}, \quad v + W_2 = \begin{pmatrix} * & 0 \\ 1 & * \end{pmatrix},$$

whose intersection is

$$v + W = \left(\begin{array}{cc} * & 0 \\ 1 & 0 \end{array}\right).$$

The smallest strictly Neumaier graph

The switching edges between the cliques W_1 , $v + W_1$ gives a graph isomorphic to the complement of the Shrikhande graph.

The switching edges between the cliques W_1 , $v + W_1$ and then between the cliques W_2 , $v + W_2$ gives the smallest strictly Neumaier graph, which is vertex-transitive, has parameters (16.9,4;2,4) and contains a spread.

A generalisation of the switching

This idea also works in the general case $e \geq 2$.

Take the (e-1)-dimensional subspace

$$W = \left(\begin{array}{ccc|c} * & \dots & * & * & 0 \\ 0 & \dots & 0 & 0 & 0 \end{array}\right),$$

The subspace W is contained in the two generators

$$W_1 = \left(\begin{array}{ccc|c} * & \dots & * & * & * \\ 0 & \dots & 0 & 0 & 0 \end{array}\right) \text{ and } W_2 = \left(\begin{array}{ccc|c} * & \dots & * & * & 0 \\ 0 & \dots & 0 & 0 & * \end{array}\right).$$

Take the vector

$$v = \left(\begin{array}{ccc|c} 0 & \dots & 0 & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 \end{array}\right)$$

and consider the cosets

$$v+W_1 = \begin{pmatrix} * & \dots & * & * & * \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}, \quad v+W_2 = \begin{pmatrix} * & \dots & * & * & 0 \\ 0 & \dots & 0 & 1 & * \end{pmatrix},$$

whose intersection is

$$v+W=\left(\begin{array}{cc|cccc} *&\ldots&*&*&0\\ 0&\ldots&0&1&0\end{array}\right)$$

A generalisation of the switching

The switching edges between the cliques W_1 , $v + W_1$ gives a strongly regular graph which has parameters the same as the affine polar graph $VO^+(2e, 2)$.

The switching edges between the cliques W_1 , $v + W_1$ and then between the cliques W_2 , $v + W_2$ gives a strictly Neumaier graph, which is not vertex-transitive and contains a 2^{e-1} -regular clique of size 2^e .

A variation of the Godsil-McKay switching

Let Γ be a graph whose vertex set is partitioned as $C_1 \cup C_2 \cup D$. Assume that $|C_1| = |C_2|$ and that the induced subgraphs on C_1 , C_2 , and $C_1 \cup C_2$ are regular, where the degrees in the induced subgraphs on C_1 and C_2 are the same. Suppose that all $x \in D$ satisfy one of the following

- 1. $|\Gamma(x) \cap C_1| = |\Gamma(x) \cap C_2|$, or
- 2. $\Gamma(x) \cap (C_1 \cup C_2) \in \{C_1, C_2\}.$

Construct a graph Γ' from Γ by modifying the edges between $C1 \cup C2$ and D as follows:

$$\Gamma'(x) \cap (C_1 \cup C_2) := \begin{cases} C_1, & \text{if } \Gamma(x) \cap (C_1 \cup c_2) = C_2; \\ C_2, & \text{if } \Gamma(x) \cap (C_1 \cup c_2) = C_1; \\ \Gamma(x) \cap (C_1 \cup C_2), & \text{otherwise.} \end{cases}$$

[6] W. Wang, L. Qiu, Y. Hu, Cospectral graphs, GM-switching and regular rational orthogonal matrices of level p, Linear Algebra and its Applications, Volume 563, 15 (2019), 154–177. [7] F. Ihringer, A. Munemasa, New Strongly Regular Graphs from Finite Geometries via Switching, https://arxiv.org/pdf/1904.03680.pdf

Applications of the variation of GM-switching

- ▶ Twisting of cliques in the generalised construction in the case $t \ge 2$;
- ▶ Switching edges between two regular cliques of $VO^+(2e, 2)$ from the same spread

A question from the book "Distance-regular graphs"

The complement of a $n \times (n+1)$ -lattice is an edge-regular graph whose parameters k and λ satisfy the equality

$$\lambda = k + 1 - \sqrt{4k + 1}.$$

In [8,p.13], the following problem has been formulated: "Is every edge-regular graph with parameters (n, k, λ) satisfying

$$\lambda > k + 1 - \sqrt{4k + 1}.$$

necessarily strongly regular?"

For the smallest strictly Neumaier graph (edge-regular with parameters (16,9,4)) we have

$$4 > 10 - \sqrt{37}$$
.

However, all other graphs from the infinite family of strictly Neumaier graphs do not satisfy this inequality.

[8] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin (1989).

Thank you for your attention!