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Outline

▶ Strongly regular graphs

▶ EKR problems on strongly regular graphs from the book by
Chris Godsil and Karen Meagher

▶ Recent progress towards these problems and further questions
▶ Block graphs of orthogonal arrays
▶ Paley graphs of square order
▶ Block graphs of 2-designs
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Strongly regular graphs

A graph Γ is called k-regular if there exists an integer k ≥ 0 such that
each vertex in Γ has exactly k neighbours.

A graph on v vertices is called a strongly regular graph with
parameters (v, k, λ, µ) if:
(a) it is k-regular;
(b) each pair of adjacent vertices in the graph have exactly λ common
neighbours;
(c) each pair of distinct nonadjacent vertices in the graph have
exactly µ common neighbours.

Every non-trivial strongly regular graph has exactly three distinct
eigenvalues k, r, s, where s < 0 < r < k holds. Moreover, the
eigenvalues r and s can be expressed in terms of the parameters
(v, k, λ, µ).
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Delsarte-Hoffman bound
Let s be the smallest eigenvalue of a k-regular strongly regular graph
G. Delsarte proved [D73] that the clique number of G is at most

1− k

s
.

This bound is known as the Delsarte-Hoffman bound (see [BCN89,
Proposition 1.3.2]).

A clique in a strongly regular graph whose size attains the
Delsarte-Hoffman bound is called a Delsarte clique (see [H21] for
historical remarks).

[BCN89] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs,

Springer-Verlag, Berlin (1989).

[D73] P. Delsarte. An algebraic approach to the association schemes of coding

theory, Philips Res. Rep. Suppl., (10):vi+97, 1973.

[H21] W. H. Haemers, Hoffman’s ratio bound, Linear Algebra and its Applications

Volume 617, (2021) 215–219. https://doi.org/10.1016/j.laa.2021.02.010
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Erdős-Ko-Rado combinatorics of strongly regular graphs
The classical Erdős-Ko-Rado theorem deals with maximum cliques in
the complement of the Kneser graphs and has two parts: the bound
and the characterisation.

In Erdős-Ko-Rado combinatorics of strongly regular graphs, which
was proposed by Chris Godsil and Karen Meagher, Kneser graphs are
replaced with appropriate strongly regular graphs for whose vertices
the notion of ‘intersecting’ can be defined, and the role of the required
upper bound for the size of an intersecting family is played by the
Delsarte-Hoffman bound.

Thus, the main goal in Erdős-Ko-Rado combinatorics of strongly
regular graphs is to obtain a characterisation of Delsarte cliques in
certain classes of strongly regular graphs. If such a characterisation is
obtained, then it is interesting to determine the size of second largest
maximal (w.r.t. inclusion) cliques and characterise them. Special
attention is paid to block graphs of orthogonal arrays (including
Paley graphs of square order) and block graphs of 2-designs.
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Orthogonal arrays and their block graphs
An orthogonal array OA(m,n) is an m× n2 array with entries from
an n-element set T with the property that the columns of any 2× n2

subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted XOA(m,n),
is defined to be the graph whose vertices are columns of the
orthogonal array, where two columns are adjacent if there exists a row
in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i in
row r. These sets are cliques, and since each element of the n-element
set T occurs exactly n times in each row, the size of Sr,i is n for all i
and r. These cliques are called the canonical cliques in the block
graph XOA(m,n).

A simple combinatorial argument shows that the block graph of an
orthogonal array is a strongly regular graph. Moreover, by the
Delsarte-Hoffman bound, a clique in XOA(m,n) has size at most n, and
the canonical cliques show the tightness of this bound.

6 / 28



EKR theorem for block graphs of orthogonal arrays:
special case
The following theorem can be viewed as an analogue of the EKR
theorem for block graphs of orthogonal arrays in a special case.

Theorem 1 ([GM15, Corollary 5.5.3])

Let X = XOA(m,n) be the block graph of an orthogonal array OA(m,n)
with n > (m− 1)2. Then the only maximum cliques in X are the
canonical clique.

Comments:

▶ The theorem gives a characterisation of maximum cliques in
terms of the parameters n and m of orthogonal arrays.

▶ There exist infinitely many orthogonal arrays for which this
theorem does not apply to (for which the parameters n and m do
not satisfy the condition n > (m− 1)2).

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).
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EKR problems on block graphs of orthogonal arrays
Chris Godsil and Karen Meagher formulated the following open
problems.

Problem 1 ([GM15, Problem 16.4.1])

Find a characterisation of the orthogonal arrays, based only on the
parameters of the array, for which all of the maximum cliques in the
orthogonal array graph are canonical cliques.

Problem 2 ([GM15, Problem 16.4.2])

Assume that OA(m, (m− 1)2) is an orthogonal array and its
orthogonal array graph has non-canonical cliques of size (m− 1)2. Do
these non-canonical cliques form subarrays?

Problem 3 ([GM15, Section 16.4])

Determine all the maximum cliques in the block graph for any
orthogonal array.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).
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Affine planes

An affine plane is a system of points and lines that satisfy the
following axioms:

▶ Any two distinct points lie on a unique line.

▶ Given any line and any point not on that line there is a unique
line which contains the point and does not meet the given line.
(Playfair’s axiom)

▶ There exist three non-collinear points (points not on a single
line).

In an affine plane, two lines are called parallel if they are equal or
disjoint. Using this definition, Playfair’s axiom above can be replaced
by:

▶ Given a point and a line, there is a unique line which contains
the point and is parallel to the line.
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Properties of finite affine planes and orthogonal arrays
If the number of points in an affine plane is finite, then if one line of
the plane contains n points then:

▶ each line contains n points,

▶ each point is contained in n+ 1 lines,

▶ there are n2 points in all, and

▶ there is a total of n2 + n lines.

The number n is called the order of the affine plane.

It is well-known that for an orthogonal array OA(m,n), the
inequality m ≤ n+ 1 holds (note that an orthogonal array
OA(n+ 1, n) is called complete). Also, it is well-known that the
existence of an affine plane of order n is equivalent to the existence of
a complete orthogonal array OA(n+ 1, n).

Since any non-empty subset of rows of an orthogonal array is again
an orthogonal array, finite affine planes is a reach source of orthogonal
arrays for all m ∈ {1, . . . , n}. However, not every orthogonal array
can be extended to a complete orthogonal array.
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Desarguesian affine planes and orthogonal arrays

Let q be a prime power and W be a 2-dimensional vector space over
the finite fields Fq.

The space W can be viewed as a group w.r.t. to the addition of
vectors. Then every 1-dimensional subspace forms a subgroup of
order q in W .

Let P the set of vectors from W and L be the set of all cosets of
1-dimensional subspaces of W .

Then the pair (P,L), considered as the point set and the line set,
with the natural incidence relation defined by containment, forms an
affine plane of order q, denoted by AG(2, q).

For every prime power q, the affine plane AG(2, q) is called a
Desarguesian affine plane. Moreover, any orthogonal array OA(m, q)
obtained as a subset of rows of a complete orthogonal array
OA(q + 1, q) that is equivalent to a Desarguesian affine plane
AG(2, q), is also called Desarguesian.
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Recent results on Desarguesian orthogonal arrays (I)

Towards Problem 1, we obtained [GY24] a characterisation of the
Desarguesian orthogonal arrays, based only on the parameters of the
array, for which all of the maximum cliques in the block graph of a
Desarguesian orthogonal array are canonical cliques. We summarise
the results in Theorem 2.

[GY24] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, Journal of Combinatorial Theory, Series A, Volume 206,

August 2024, 105887.
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Recent results on Desarguesian orthogonal arrays (II)
Let B(q) denote the smallest value of m such that there exists a
Desarguesian orthogonal array OA(m, q) whose block graph has a
non-canonical maximum clique. If the block graph of a Desarguesian
orthogonal array OA(B(q), q) has a non-canonical maximum clique,
we call such a graph extremal.

Theorem 2 ([GY24, Theorems 1.3–1.5, Example 5.6])

The following statements hold.
(1) If q is prime and q ≥ 3, then B(q) = q+3

2 . Moreover, there exists a
unique (up to isomorphism) extremal graph and its non-canonical
cliques can be explicitly described.
(2) If q = pt for some prime p and integer t > 1, then
B(q) = pt−1 + 1. Moreover, if q is a square or a cube, there exists a
unique (up to isomorphism) extremal graph and its non-canonical
cliques can be explicitly described.
(3) If q = 32, there exists at least two (up to isomorphism) extremal
graphs.
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Recent results on Desarguesian orthogonal arrays (III)
Note that Theorem 2 contains some results towards Problem 2.
Namely, in the case when q is a square, we proved the following about
the extremal graph Xq:

▶ Xq is isomorphic to the affine polar graph V O+(4,
√
q), an

important graph in the theory of strongly regular graphs.

▶ Using the knowledge about affine polar graphs, we conclude:

1. Every vertex of Xq is contained in
√
q + 1 canonical maximum

cliques and
√
q + 1 non-canonical maximum cliques.

2. Every non-canonical clique in Xq has the structure of a complete
orthogonal array OA(

√
q + 1,

√
q), which is widely known in finite

geometry as a Baer subplane. In other words, the answer to the
question in Problem 2 is positive at least in the case of
Desarguesian orthogonal arrays.

3. Canonical and non-canonical maximum cliques in Xq lie in the
same orbit under the action of the automorphism group of Xq.
This is quite surprising because one usually expects that canonical
and non-canonical maximum intersecting families form separate
classes and have essentially different structure.
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Recent results on Desarguesian orthogonal arrays (IV)

Note that Theorem 2 also contains some results towards Problem 3.
Namely, we determined all maximum cliques in block graphs of

▶ Desarguesian orthogonal arrays OA(m, q), where m < B(q), and

▶ Desarguesian orthogonal arrays OA(B(q), q), where q is a prime,
a square, or a cube.
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Paley graphs of square order
Let u be a prime power, u ≡ 1 (mod 4). Consider the finite field Fu

and note that that exactly a half of elements from the multiplicative
group F∗

u are squares, denote them by Su. Define a graph P (u) on the
elements of Fu with two elements being adjacent whenever their
difference belongs to Su.

Paley graphs are known to be strongly regular.

If u = q2 for some prime power q, we say that P (q2) is a Paley graph
of square order. In this case, the Delsarte-Hoffman bound is equal to
q and the subfield Fq is an example of a Delsarte clique.

The cliques that are affine images of Fq (that is, the cliques of the
form aFq + b, where a ∈ (F∗

q)
2 and b ∈ Fq) are called the canonical

cliques in P (q2).

In [B84], it was shown that Paley graphs of square order have only
canonical maximum cliques.

[B84] A. Blokhuis, On subsets of GF (q2) with square differences, Indag. Math. 46

(1984) 369–372.
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EKR problems on Paley graphs of square order
A vector in Rn is balanced if it is orthogonal to the all-ones vector 1.
If vS is the characteristic vector of a subset S of the set V , then we
say that

vS − |S|
|V |

1

is the balanced characteristic vector of S.

Chris Godsil and Karen Meagher asked for an alternative proof of the
Blokhuis’ result and formulated the following open problems.

Problem 4 ([GM15, Problem 16.5.1])

Show that the balanced characteristic vectors of the canonical cliques
of P (q2), being q−1

2 -eigenvectors of the adjacency matrix of P (q2),

span the corresponding q−1
2 -eigenspace.

Problem 5 ([GM15, Problem 16.5.2])

Prove that the only balanced characteristic vectors of sets of size q, in
the q−1

2 -eigenspace of P (q2), are the balanced characteristic vectors of
the canonical cliques.
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A solution for Problem 4

In [AGLY22], we pointed out that every Paley graph P (q2) of square
order can be viewed as the block graph of an orthogonal array
OA( q+1

2 , q). Moreover, we showed in [AGLY22] that the balanced
characteristic vectors of canonical cliques in the block graph of any
orthogonal array OA(m,n) always span the (n−m)-eigenspace of the
adjacency matrix, and thus solved Problem 4 in a broader context.

However, Problem 5 remains unsolved.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module property

of pseudo-Paley graphs of square order, The Electronic Journal of Combinatorics,

29(4) (2022), #P4.33.
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Comments on the Hilton-Milner theorem

▶ Similar to the EKR theorem, the Hilton-Milner theorem has two
parts: a bound and a characterisation of families that meet the
bound.

▶ In other words, the Hilton-Milner theorem shows what is second
largest size of a maximal intersecting family (w.r.t. inclusion)
and gives their characterisation.

▶ In terms of graphs, this theorem gives a characterisation of
second largest maximal cliques in the in the complement of the
Kneser graphs K(n, k).
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Hilton-Milner cliques in graphs
In terms of the complement of the Kneser graph K(n, k), 2 ≤ k ≤ n

2 ,
the general second largest clique can be constructed as follows:

1. Take a canonical clique C.

2. Take a vertex x outside of C.

3. Let Cx be the set of neighbours of x in C.

4. The second largest clique is {x} ∪ Cx (and all second largest
cliques have this structure).

Let X be a graph for which canonical cliques are defined. Then, for a
canonical clique C and a vertex x /∈ C, we call the clique {x} ∪ Cx a
Hilton-Milner clique.

We are interested in the following natural problem.

Problem 6
Let {x} ∪ Cx, denoted by D, be a Hilton-Milner clique in a graph X.
(1) Is D maximal?
(2) If D is maximal, is D a second largest maximal clique?
(3) If D is not maximal, what are maximal extensions of D?
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Hilton-Milner cliques in the block graphs of
Desarguesian orthogonal arrays

Theorem 3 (Brouwer, G., Shalaginov, Yip, 2024+)

Let {x} ∪ Cx be a Hilton-Milner clique in the block graph of a
Desarguesian orthogonal array. Then the clique {x} ∪ Cx is not
always maximal, but always has a unique maximal extension, where
the size of this maximal extension may depend on the choice of C, but
whenever C is fixed, the size does not depend on the choice of x.

Theorem 4 (Brouwer, G., Shalaginov, Yip, 2024+)

A second largest maximal clique in the block graph of a Desarguesian
orthogonal array is not necessarily the maximal extension of an HM
clique, but only finitely many counterexamples are known.

Conjecture 1 (Baker, Ebert, Hemmeter, Woldar, 1996)

The maximal extension of any Hilton-Milner clique in a Paley graph
P (q2), where q ≥ 5, is a second largest maximal clique of size q+r(q)

2 ,
where r(q) is the remainder of q modulo 4.
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2-designs and their block graphs

A 2-(n,m, 1) design is a collection of m-sets of an n-set with the
property that every pair from the n-set is in exactly one set.

A specific 2-(n,m, 1) design is denoted by (V,B), where V is the n-set
(which we call the base set) and B is the collection of m-sets — these
are called the blocks of the design.

A 2-(n,m, 1) design may also be called a 2-design. In a 2-design, any
two blocks that intersect meet in exactly one point.

It is well-known that the number of blocks in a 2-(n,m, 1) design is
n(n−1)
m(m−1) and each element of V occurs in exactly n−1

m−1 blocks.

The block graph of a 2-(n,m, 1) design (V,B) is the graph with the
blocks of the design as the vertices in which two blocks are adjacent if
and only if they intersect.

Cliques in the block graph X(V,B) are in one-to-one correspondence
with intersecting set systems in (V,B).
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Canonical cliques in the block graphs of 2-designs

Fisher’s inequality implies that the number of blocks in a 2-design is
at least n; if equality holds, the design is said to be symmetric and
the block graph of a symmetric 2-design is the complete graph Kn.

A simple combinatorial argument shows that the block graph of a
2-(n,m, 1) design (that is not symmetric) is strongly regular.
Moreover, by the Delsarte-Hoffman bound, a clique in the block
graph of a 2-(n,m, 1) design has size at most n−1

m−1 , and the collection
Si of all blocks in the design that contain a given point i, is an
example of a Delsarte clique. Such cliques Si are called the canonical
cliques of the block graph.

From this, we know that a set of intersecting blocks in a 2-design is
no larger than the set of all blocks that contain a common point —
this is the bound for an EKR-type theorem for the blocks in a design.
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EKR theorem for block graphs of 2-designs: special case

It is not known in general for which designs the canonical intersecting
sets are the only maximum intersecting sets. Chris Godsil and Karen
Meagher offered a partial result.

Theorem 5 ([GM15, Corollary 5.3.5])

The only cliques of size n−1
m−1 in the block graph X(V,B) of a 2-(n,m, 1)

design with n > m3 − 2m2 + 2m are the canonical cliques.

The characterisation in Theorem 5 may fail if n ≤ m3 − 2m2 + 2m.

Theorem 6 ([GM15, Exercise 5.7])

In case n = m3 − 2m2 + 2m, a non-canonical clique in the block graph
of a 2-(n,m, 1) design necessarily forms a (m2 −m+ 1,m, 1)
subdesign (which is a projective plane of order m− 1).
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EKR problems on 2-designs

Problem 7 ([GM15, Problem 16.3.1])

Determine a characterisation of the 2-(n,m, 1) designs, based only on
the parameters of the design, for which the only maximum cliques in
the block graph are the canonical cliques.

The line graphs of the projective spaces PG(3, q) give infinitely many
examples of designs whose block graphs have non-canonical maximum
cliques with the structure of a subdesign. It was not clear if this a
result of a wider phenomenon.

Problem 8 ([GM15, Problem 16.3.2])

When the block graph of a design has maximum cliques that are not
canonical, are the non-canonical cliques isomorphic to smaller
designs?

Problem 9 ([GM15, Section 16.3])

Determine all the maximum cliques in the block graph for any
t-(n,m, λ) design.
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A solution for Problem 8
In [GK23], we negatively answered the question from Problem 8 by
showing that the 2-(66, 6, 1) design constructed in [D80] has
non-canonical maximum cliques without a subdesign structure and is
a smallest (w.r.t. the number of points) known such a design.
However, only finitely many examples are known. If one wants an
infinite family of such examples, the block size cannot be a constant
in this family. Only four infinite families of 2-designs with a growing
block size are known and only for one of them non-canonical
maximum cliques without a subdesign structure might exist, namely,
this is the family of Denniston 2-(2a+b + 2a − 2b, 2a, 2) designs,
existing for all integral a, b, where 2 ≤ a < b. Computations show
that only canonical maximum cliques exist in the block graphs of such
designs for small admissible values of a, b.

[D80] R. H. F. Denniston, A Steiner system with a maximal arc, Ars Combin. 9

(1980) 247–248.

[GK23] S. Goryainov, E. V. Konstantinova, Non-canonical maximum cliques

without a design structure in the block graphs of 2-designs, arXiv:2311.01190.
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Possible directions for further research
1. For a better understanding of small orthogonal arrays, it is

possible to examine the database of small non-Desarguesian
projective planes by Eric Moorhouse (the deletion of a line from
a projective plane together with its points results in an affine
plane, which depends on the choice of the deleted line; further,
these affine planes, considered as complete orthogonal arrays,
give rise to a plenty of orthogonal arrays with various
parameters). Some of these non-Desarguesian projective planes
are parts of infinite families.

2. For 2-designs, it is possible to examine all known constructions
and try to produce more examples of 2-designs whose block
graphs have non-canonical maximum cliques without a subdesign
structure. In particular, it would be interesting to obtain an
answer for the Denniston designs. In general, the following
question is interesting: does there exist infinitely many 2-designs
whose block graphs have non-canonical maximum cliques without
a subdesign structure?
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Thank you for your attention!
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