On a correspondence between maximal cliques in Paley graphs of square order

Sergey Goryainov

Chelyabinsk State University

Based on a joint project with Alexander Masley and Leonid Shalaginov

Graphs and Groups, Geometries and GAP (G2G2-2021) June 24th, 2021

(4月) キョン キョン

Preliminary

- 2 Two families of maximal cliques in Paley graphs of square order
- Orrespondence between two known families of maximal cliques

Let q be an odd prime power, $q \equiv 1(4)$.

The Paley graph of order q (denoted by P(q)) is a graph defined as follows:

• the vertex set is the finite field \mathbb{F}_q ;

• two vertices γ_1, γ_2 are adjacent iff $\gamma_1 - \gamma_2$ is a square in \mathbb{F}_q^* . Since -1 is a square in \mathbb{F}_q^* iff $q \equiv 1(4)$, the graph P(q) is undirected.

(D) (A) (A) (A) (A)

A clique (resp. coclique) in an undirected graph is a set of pairwise adjacent (resp. non-adjacent) vertices.

Problem 1

What are maximum cliques (cocliques) in P(q)?

Since P(q) is self-complementary, the studying cliques and the studying cocliques in P(q) are equivalent.

Since P(q) is strongly regular, we can apply Delsarte-Hoffman bound to P(q). It says that a clique (coclique) in P(q) has at most \sqrt{q} vertices.

Problem 1 is unsolved in general.

Let q be an odd prime power.

According to the Delsarte-Hoffman bound, a clique in $P(q^2)$ has at most q vertices.

Since every element from \mathbb{F}_q^* is a square in $\mathbb{F}_{q^2}^*$, the subfield \mathbb{F}_q induces a clique of size q in $P(q^2)$, which implies the tightness of the Delsarte-Hoffman bound.

In 1984, Blokhuis classified maximum cliques in $P(q^2)$ and proved [1] that such a clique is an affine image of the subfield \mathbb{F}_q .

[1] A. Blokhuis, On subsets of $GF(q^2)$ with square differences, Indag. Math. **46** (1984) 369–372.

A (1) > A (2) > A (2) >

Second largest known maximal cliques in $P(q^2)$

Problem 2

What are maximal but not maximum cliques in $P(q^2)$?

Given an odd prime power q, put
$$r(q) := \begin{cases} 1, & q \equiv 1(4); \\ 3, & q \equiv 3(4). \end{cases}$$

In 1996, Baker et al. found [2] maximal cliques of size $\frac{q+r(q)}{2}$ in $P(q^2)$ for any odd prime power q. Let us say that these cliques are of Type I.

In 2018, Goryainov et al. found [3] one more family of maximal cliques in $P(q^2)$ with the same size $\frac{q+r(q)}{2}$. Let us say that these cliques are of Type II.

[2] R. D. Baker, G. L. Ebert, J. Hemmeter, A. J. Woldar, *Maximal cliques in the Paley graph of square order*, J. Statist. Plann. Inference **56** (1996) 33–38.

[3] S. V. Goryainov, V. V. Kabanov, L. V. Shalaginov, A. A. Valyuzhenich, *On* eigenfunctions and maximal cliques of Paley graphs of square order, Finite Fields and Their Applications, **52**, (2018) 361–369.

Computations on maximal cliques of size $\frac{q+r(q)}{2}$ in $P(q^2)$

q	3	5	7	9	11	13	17	19	23
Clique size	3	3	5	5	7	7	9	11	13
#Orbits	1	1	1	3	3	4	9	4	4

q	25	27	29	31	37	41	43	47	49
Clique size	13	15	15	17	19	21	23	25	25
#Orbits	2	2	2	2	2	2	2	2	2

q	53	59	61	67	71	73	79	81	83
Clique size	27	31	31	35	37	37	41	41	43
#Orbits	2	2	2	2	2	2	2	2	2

Conjecture

For $q \ge 25$, the graph $P(q^2)$ contains exactly two non-equivalent cliques of size $\frac{q+r(q)}{2}$.

A (B) > A (B) > A (B) >

Fix a non-square $d \in \mathbb{F}_q^*$.

Consider the polynomial $f(t) = t^2 - d \in \mathbb{F}_q[t]$.

Then

$$\mathbb{F}_{q^2} = \{ x + y\alpha \mid x, y \in \mathbb{F}_q \},\$$

where α is a root of f(t).

Let β be a primitive element of \mathbb{F}_{q^2} . Note that the elements from $\mathbb{F}_q^* = \langle \beta^{q+1} \rangle$ are squares in $\mathbb{F}_{q^2}^*$.

Let V(2,q) be a 2-dimensional vector space over \mathbb{F}_q .

Consider the affine plane A(2, q) whose

- points are vectors of V(2, q);
- lines are all cosets of 1-dimensional subspaces in V(2, q);
- incidence relation is natural (whether a vector belongs to a coset).

Since \mathbb{F}_{q^2} can viewed as a 2-dimensional vector space over \mathbb{F}_q , the points of A(2,q) can be matched with the elements of \mathbb{F}_{q^2} as follows:

$$(x,y) \leftrightarrow x + y\alpha.$$

(4月) (1日) (日)

Given a line ℓ in A(2, q), there exist elements $x_1 + y_1 \alpha$ and $x_2 + y_2 \alpha$ such that

$$\ell = \{x_1 + y_1\alpha + c(x_2 + y_2\alpha) \mid c \in \mathbb{F}_q\}.$$

The line ℓ is called quadratic (reps. non-quadratic) if $x_2 + y_2 \alpha$ is a square (resp. non-square) in $\mathbb{F}_{a^2}^*$.

- The subfield \mathbb{F}_q is a quadratic line.
- There are precisely q + 1 lines through a point: $\frac{q+1}{2}$ quadratic and $\frac{q+1}{2}$ non-quadratic lines.

(4月) (4日) (4日)

For any distinct $\gamma_1, \gamma_2 \in \mathbb{F}_{q^2}$, the difference $\gamma_1 - \gamma_2$ is a square in $\mathbb{F}_{q^2}^*$ (equivalently, $\gamma_1 \sim \gamma_2$ in $P(q^2)$) iff the line connecting γ_1 and γ_2 is quadratic.

<日</td>

The automorphism group of $P(q^2)$ acts arc-transitively, and the following equality

$$\operatorname{Aut}\left(P(q^2)\right) = \left\{ v \mapsto av^{\gamma} + b \mid a \in S, \ b \in \mathbb{F}_{q^2}, \ \gamma \in \operatorname{Gal}(\mathbb{F}_{q^2}) \right\}$$

holds, where S is the set of square elements in $\mathbb{F}_{a^2}^*$.

The group $\operatorname{Aut}(P(q^2))$ preserves the sets of quadratic and non-quadratic lines.

The group $\operatorname{Aut}(P(q^2))$ has a subgroup that stabilises the quadratic line \mathbb{F}_q and acts faithfully on the set of points that do not belong to \mathbb{F}_q ; this subgroup is given by the affine transformations $x \mapsto ax + b$, where $a \in \mathbb{F}_q^*$ and $b \in \mathbb{F}_q$.

• (1) • (

Take an element $\gamma \in \mathbb{F}_{q^2} \setminus \mathbb{F}_{q}$.

Since \mathbb{F}_q is a quadratic line, the line through γ that is parallel to \mathbb{F}_q , is quadratic too.

The other $\frac{q-1}{2}$ quadratic lines through γ intersect \mathbb{F}_q in $\frac{q-1}{2}$ points; denote this set of $\frac{q-1}{2}$ intersection points by X_{γ} .

For the conjugate element $\overline{\gamma}$, the equality $X_{\overline{\gamma}} = X_{\gamma}$ holds.

If $q \equiv 1(4)$, each of the sets $\{\gamma\} \cup X_{\gamma}$ and $\{\overline{\gamma}\} \cup X_{\gamma}$ induce a maximal clique of size $\frac{q+1}{2}$.

If $q \equiv 3(4)$, the set $\{\gamma, \overline{\gamma}\} \cup X_{\gamma}$ induces a maximal clique of size $\frac{q+3}{2}$.

[2] R. D. Baker, G. L. Ebert, J. Hemmeter, A. J. Woldar, *Maximal cliques in the Paley graph of square order*, J. Statist. Plann. Inference **56** (1996) 33–38.

The subgroup Q of order q+1 in $\mathbb{F}_{q^2}^*$

Put

$$\begin{split} & \omega := \beta^{q-1}, Q := \langle \omega \rangle, \\ & Q_0 := \langle \omega^2 \rangle, Q_1 := \omega \langle \omega^2 \rangle. \end{split}$$

- Q is a subgroup of order q+1 in $\mathbb{F}_{q^2}^*$
- Q is the kernel of the norm mapping $N : \mathbb{F}_{q^2}^* \mapsto \mathbb{F}_q^*$; given an element $\gamma = x + y\alpha \in \mathbb{F}_{q^2}^*$,

$$N(\gamma) := \gamma^{q+1} = \gamma \gamma^q = \gamma \overline{\gamma} = x^2 - y^2 d$$

- Q forms an oval in A(2, q) (that is a set of q + 1 points with no three on a line)
- Q is included to the neighbourhood of 0
- If $q \equiv 1(4)$, then Q induces the complete bipartite graph with parts Q_0 and Q_1
- If $q \equiv 3(4)$, then Q induces a pair of disjoint cliques Q_0 and Q_1

If $q \equiv 1(4)$, each of the sets Q_0 and Q_1 induces a maximal coclique of size $\frac{q+1}{2}$ in $P(q^2)$ (a maximal clique of size $\frac{q+1}{2}$ in $\overline{P(q^2)}$). If $q \equiv 3(4)$, each of the sets $\{0\} \cup Q_0$ and $\{0\} \cup Q_1$ induces a maximal clique of size $\frac{q+3}{2}$ in $P(q^2)$.

[3] S. V. Goryainov, V. V. Kabanov, L. V. Shalaginov, A. A. Valyuzhenich, *On eigenfunctions and maximal cliques of Paley graphs of square order*, Finite Fields and Their Applications, **52**, (2018) 361–369.

Consider the mapping $\varphi : \mathbb{F}_{q^2} \mapsto \mathbb{F}_{q^2}$ defined by the rule:

$$arphi(\gamma) := egin{cases} rac{\gamma+1}{\gamma-1} & ext{if } \gamma
eq 1, \ 1 & ext{if } \gamma = 1. \end{cases}$$

Proposition 1

For any $\gamma = x + y\alpha \in Q$, $\gamma \neq 1$, the equality $\varphi(\gamma) = \frac{y}{x-1}\alpha$ holds.

It means that φ maps $Q \setminus \{1\}$ to the line $\{c\alpha \mid c \in \mathbb{F}_q\}$.

Proposition 2

For any
$$\gamma = x + y\alpha \in Q$$
, $\gamma \neq 1$, the equality $\varphi(\gamma^2) = \frac{x}{vd}\alpha$ holds.

Theorem

If $q \equiv 1(4)$, then $\varphi(Q_0)$ is a coclique of size $\frac{q+1}{2}$ and of Type I; if $q \equiv 3(4)$, then $\varphi(Q_0 \cup \{0\})$ is a maximal clique of size $\frac{q+3}{2}$ and of Type I.

- We are interested to find a generalisation of Theorem for 3-Paley graphs of square order (two vertices are adjacent iff their difference is a cube in $\mathbb{F}_{a^2}^*$).
- Computations show that, for $q=11,\,17,\,23,\,29,\,41,\,47,\,53,$ an analogue of Theorem holds for 3-Paley graphs of square order q^2 .

伺下 イヨト イヨト

Thank you for your attention!

(日) (コン (コン