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Erdős–Ko–Rado theorem

The Erdős–Ko–Rado theorem, one of the fundamental results in
combinatorics, provides information about systems of
intersecting sets. A family A of subsets of a ground set — it
might as well be {1, . . . , n} — is intersecting if any two sets in
A have at least one point in common.

Theorem 1 (Erdős–Ko–Rado, 1961)

Let k and n be integers with n ≥ 2k. If A is an intersecting
family of k-subsets of {1, . . . , n}, then

|A| ≤
(
n− 1

k − 1

)
.

Moreover, if n > 2k, equality holds if and only if A consists of
all the k-subsets that contain a given point from {1, . . . , n}.



Extensions of Erdős–Ko–Rado theorem

This theorem has two parts: a bound and a characterisation of
families that meet the bound.

One reason this theorem is so important is that it has many
interesting extensions. In particular, it can be translated to a
question in graph theory. The Kneser graph K(n, k) has all
k-subsets of {1, . . . , n} as its vertices, and two k-subsets are
adjacent if they are disjoint. (We assume n ≥ 2k to avoid
trivialities.)

Then an intersecting family of k-subsets is a coclique in the
Kneser graph, and we see that the EKR theorem characterises
the cocliques of maximum size in the Kneser graph. An
intersecting family consisting of all subsets containing a given
point is called canonical.

So we can seek to extend the EKR theorem by replacing the
Kneser graphs by other interesting families of graphs.



EKR properties

Given any graph X for which we can describe its canonical
cliques (that is, typically cliques with large size and simple
structure; in best case, cliques are canonical with respect to
some notion of ‘intersecting’ defined for the vertices), we can
ask whether X has any of the following three related
Erdős-Ko-Rado (EKR) properties:

▶ EKR property: the clique number of X equals the size of
canonical cliques.

▶ EKR-module property: the characteristic vector of each
maximum clique in X is a Q-linear combination of
characteristic vectors of canonical cliques in X.

▶ strict-EKR property: each maximum clique in X is a
canonical clique.

For a graph with EKR-property and without strict-EKR
property, we say that a maximum clique is non-canonical if it is
not canonical.



EKR-type results

The classical Erdős-Ko-Rado theorem [EKR61] classified
maximum intersecting families of k-element subsets of
{1, 2, . . . , n} when n ≥ 2k + 1.

Since then, EKR-type results refer to understanding maximum
intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book
[GM15] by Godsil and Meagher provides an excellent survey on
the modern algebraic approaches to proving EKR-type results
for permutations, set systems, orthogonal arrays, and so on.

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems

of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Block graphs of orthogonal arrays

In this talk, we consider the definition of the notion of
‘intersecting’ for the vertices of the block graphs of orthogonal
arrays (that is, for columns of an orthogonal array). Once we
have done this, we can define the notion of canonical
intersecting families in these graphs.

An orthogonal array OA(m,n) is an m× n2 array with entries
from an n-element set T with the property that the columns of
any 2× n2 subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted
XOA(m,n), is defined to be the graph whose vertices are columns
of the orthogonal array, where two columns are adjacent if there
exists a row in which they have the same entry.

Two columns of an orthogonal array are called intersecting if
they have the same entry in some row.



Canonical cliques in the block graphs of orthogonal
arrays

Let Sr,i be the set of columns of OA(m,n) that have the entry i
in row r. These sets are cliques, and since each element of the
n-element set T occurs exactly n times in each row, the size of
Sr,i is n for all i and r. These cliques are called the canonical
cliques in the block graph XOA(m,n).

A simple combinatorial argument shows that the block graph of
an orthogonal array is strongly regular. Moreover, by the
Delsarte bound, a clique in XOA(m,n) has size at most n, and
the canonical cliques show the tightness of this bound.



Intersecting columns in an orthogonal array
If we view columns of an orthogonal array that have the same
entry in the same row as intersecting columns, then we can view
the Delsarte bound as the bound in the EKR theorem for
intersecting columns of an orthogonal array. The question is,
under what conditions will all cliques of size n in the graph
XOA(m,n) be canonical? The following answer can be viewed
as the uniqueness part of the EKR theorem.

Theorem 2 ([GM15, Corollary 5.5.3])

Let X = XOA(m,n) be the block graph of an orthogonal array
OA(m,n) with n > (m− 1)2 (equivalently, m <

√
n+ 1). Then

X has the strict-EKR property: the only maximum cliques in X
are the columns that have entry i in row r for some 1 ≤ i ≤ n
and 1 ≤ r ≤ m.

This is equivalent to saying that the largest set of intersecting
columns in an orthogonal array is the set of all columns that
have the same entry in the some row, and these sets are the
only maximum intersecting sets.



Open problems for the block graphs of orthogonal arrays

Problem 1
Find a characterisation of the orthogonal arrays, based only on
the parameters of the array, for which all of the maximum
cliques in the orthogonal array graph are canonical cliques.

Problem 2
Assume that OA(m, (m− 1)2) is an orthogonal array and its
orthogonal array graph has non-canonical cliques of size
(m− 1)2. Do these non-canonical cliques form subarrays?

[GM15, Section 5.5] provides an example of non-canonical
cliques in the block graph of an orthogonal array that form
subarrays. In this talk, we will meet a subfamily of affine polar
graphs that can be viewed as block graphs of orthogonal arrays
containing non-canonical cliques having subarray structure.

[GM15] C. D. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



A general problem for block graphs of orthogonal arrays

Problem 3
Determine all the maximum cliques in the block graph of an
arbitrary orthogonal array.



Affine plane AG(2, q)

Let q be a prime power and W be a 2-dimensional vector space
over the finite fields GF (q).

Then the set of all cosets of 0-dimensional and 1-dimensional
subspaces of W , ordered by inclusion, forms an affine plane of
order q, denoted by AG(2, q).



Identification of the elements of Fq2 and the points of
AG(2, q)

Let F = Fq2 for some prime power q. Then F can be viewed in
a canonical way as a two-dimensional vector space over Fq, or,
as the affine plane AG(2, q).

Each nonzero element uniquely defines a line through 0 and can
be viewed as a slope (direction) of this line.



Peisert-type graphs

Let q be a prime power. Let S ⊂ F∗
q2 be a union of m ≤ q cosets

of F∗
q in F∗

q2 such that F∗
q ⊂ S, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a

Peisert-type graph of type (m, q). A clique in X is called a
canonical clique if it is the image of the subfield Fq under an
affine transformation.

Peisert-type graphs are equivalent to the block graphs of
orthogonal arrays obtained from the parallel classes of the affine
plane AG(2, q).

Another way to look at Peisert-type graphs is to consider them
as fusions of certain amorphic cyclotomic association schemes.



Basic properties of Peisert-type graphs

▶ Every Peisert-type graph of type (m, q) can be naturally
defined on the points of the affine plane AG(2, q) with two
points being adjacent whenever the line through these
points belongs to one of m prescribed parallel classes of
lines; the canonical cliques in a Peisert-type graph of type
(m, q) are exactly the lines from m prescribed parallel
classes defining the graph.

▶ The affine plane AG(2, q) can be viewed as an orthogonal
(q + 1)× q2-array OA(q + 1, q); every Peisert-type of type
(m, q) graph can be viewed as the block graph of an
orthogonal array OA(m, q) obtained from this array
OA(q + 1, q) by choosing the subset of m rows
corresponding the m prescribed classes of parallel classes.

▶ The definitions of canonical cliques in the block graphs of
orthogonal arrays and Peisert-type graphs agree with each
other.



Intersections of the class of Peisert-type graphs with
some other classes

▶ Paley graphs P (q2) of square order are Peisert-type graphs;

▶ Peisert graphs P ∗(q2), where q ≡ 3 (mod 4), are
Peisert-type graphs (not all Peisert graphs are Peisert-type
graphs);

▶ Generalised Paley graphs GP (q2, d), where d | (q + 1) and
d > 1 (not all generalised Paley graphs are Peisert-type
graphs);

▶ Generalised Peisert graphs GP ∗(q2, d), where d | (q + 1)
and d is even (not all generalised Peisert graphs are
Peisert-type graphs).



Balanced characteristic vectors
A vector in Rn is balanced if it is orthogonal to the all-ones
vector 1. If vS is the characteristic vector of a subset S of the
set V , then we say that

vS − |S|
|V |

1

is the balanced characteristic vector of S.

In [B84], Blokhuis proved that Paley graphs of square order
have the strict-EKR property.

Any clique of size q in the Paley graph P (q2) is a Delsarte
clique, and so its balanced characteristic vector lies in the
−1+q

2 -eigenspace of the Paley graph. In [GM15, Section 5.9], a
possible alternate proof of Blokhuis’s result is presented; this
proof relies on the following problems.

[B84] A. Blokhuis, On subsets of GF (q2) with square differences, Indag.

Math. 46 (1984) 369–372.



A question on Paley graphs of square order by Godsil
and Meagher

Problem 4
Show that the −1+q

2 -eigenspace of P (q2) is spanned by the
balanced characteristic vectors of the canonical cliques.

In [AGLY22], we showed that Problem 4 is equivalent to
establishing the EKR-module property for Paley graphs of
square order. Moreover, we established the EKR-module
property for all block graphs of orthogonal arrays (including
Peisert-type graphs) and thus solved Problem 4.

Problem 5
Prove that the only balanced characteristic vectors of sets of size
q, in the −1+q

2 -eigenspace of P (q2), are the balanced
characteristic vectors of the canonical cliques.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, Electron. J. Combin. 29

(2022), no. 4, #P4.33.



Module method

In general, the module method (see [AM15, Section 4]) refers to
the strategy of proving that a graph X satisfies the strict-EKR
property in two steps:

▶ show that X satisfies the EKR-module property

▶ show that EKR-module property implies the strict-EKR
property

As an example of the module method, [AM15, Theorem 4.5]
provides a sufficient condition for the second step above for
2-transitive permutation groups.

[AM15] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some

2-transitive groups, Ann. Comb. 19 (2015), no. 4, 621–640.



Further, we list another recent results related to
EKR-properties of Peisert-type graphs



Subspace structure of Delsarte cliques in Peisert-type
graphs

The following theorem shows that all maximum cliques
(canonical and non-canonical (if any)) in Peisert-type graphs of
type (m, q), where m ≤ q+1

2 have nice algebraic structure.

Theorem 3 ([AY22, Theorem 1.2])

Let X be a Peisert-type graph of type (m, q), where q is a power
of an odd prime p and m ≤ q+1

2 . Then any maximum clique in
X containing 0 is an Fp-subspace of Fq2.

It is a good open problem to give symmetric constructions of
Peisert-type graphs with m > q+1

2 and their non-canonical
cliques without a subspace structure.

[AY22] S. Asgarli, C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, J. Combin. Theory

Ser. A 192 (2022), Paper No. 105667, 23 pp.

https://doi.org/10.1016/j.jcta.2022.105667

https://doi.org/10.1016/j.jcta.2022.105667


Erdős–Ko–Rado theorem in Peisert-type graphs (I)

The stability of canonical cliques in Peisert-type graphs has also
been studied. For simplicity, we say a Peisert-type graph X
with order q2 has the property ST (k) if each clique in X with
size at least q − k is contained in a canonical clique in X. From
the definition, it is clear that the strict-EKR property is
equivalent to the property ST (0).

Theorem 4 ([Y23])

As q → ∞, where q is a prime power, almost all Peisert-type

graphs of type ( q+1
2 , q) have the property ST (

√
q
2 ).

Theorem 5 ([Y23])

As p → ∞, where p is prime, almost all Peisert-type graphs of
type (⌊2p−2

3 ⌋, p) have the strict-EKR property, and almost all

Peisert-type graphs of type (p+1
2 , p) have the property ST (p/20).

[Y23] C. H. Yip, Erdős–Ko–Rado theorem in Peisert-type graphs,

https://arxiv.org/abs/2302.00745

https://arxiv.org/abs/2302.00745


Erdős–Ko–Rado theorem in Peisert-type graphs (II)

Theorem 6 ([Y23])

Let n ≥ 2 with the largest proper divisor being t and let q = pn.
As p → ∞, almost all Peisert-type graphs of type (q − o(pt), q)
do not have the strict-EKR property.

[Y23] C. H. Yip, Erdős–Ko–Rado theorem in Peisert-type graphs,

https://arxiv.org/abs/2302.00745

https://arxiv.org/abs/2302.00745


From now, we present the main results of this talk.



Number of pairwise non-isomorphic Peisert-type graphs

It is well-known that the stabiliser of the zero point of AG(2, q)
acts 3-transitively on the set of lines through this point; this
implies that, for any prime power q, all Peisert-type graphs of
type (3, q) are isomorphic.

Since the complement of a Peisert-type graph of type (m, q) is a
Peisert-type graph of type (q + 1−m, q), we conclude that the
number of pairwise non-isomorphic Peisert-type graphs of type
(m, q) is equal to the number of pairwise non-isomorphic
Peisert-type graphs of type (q + 1−m, q).

Whenever q ≤ 5, there exists a unique Peisert-type graph of
type (m, q) for any admissible value of m, that is, 1 ≤ m ≤ q.



Extremal Peisert-type graphs without strict-EKR
property

Theorem 7 ([AGLY22])

If q > (m− 1)2 (equivalently, m <
√
q+1), then all Peisert-type

graphs of type (m, q) have the strict-EKR property. Moreover,
when q is a square, there exists a Peisert-type graph of type
(
√
q + 1, q) without the strict-EKR property.

Given a prime power q, there exists the smallest value of m, say
eq, such that there exists a Peisert-type graph without
strict-EKR property; we call such parameter eq extremal.

In [AGLY22], we showed (in a non-constructive way) that if q is
a square, then eq =

√
q + 1. In general, we have eq ≥

√
q + 1.

A Peisert-type graph of type (eq, q) without strict-EKR
property is called extremal.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, Electron. J. Combin. 29

(2022), no. 4, #P4.33.



Number of pairwise non-isomorphic Peisert-type graphs

q = 4 : q = 5 :

m 3 4

#Graphs 1 1

strict-EKR - -

without 1 1

m 3 4 5

#Graphs 1 1 1

strict-EKR 1 - -

without - 1 1

q = 7 : q = 8 :

m 3 4 5 6

#Graphs 1 2 1 1

strict-EKR 1 2 - -

without - - 1 1

m 3 4 5 6

#Graphs 1 1 1 1

strict-EKR 1 1 - -

without - - 1 1

We thus have e4 = 3, e5 = 4, e7 = 5 and e8 = 5. In these four
cases, an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 9 :

m 3 4 5 6 7

#Graphs 1 2 2 2 1

strict-EKR 1 1 1 - -

without - 1 1 2 1

q = 11 :

m 3 4 5 6 7 8 9

#Graphs 1 2 2 4 2 2 1

strict-EKR 1 2 2 4 1 1 -

without - - - - 1 1 1

We thus have e9 = 4, e11 = 7. In these two cases, an extremal
graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 13 :

m 3 4 5 6 7 8 9 10 11

#Graphs 1 3 3 5 5 5 3 3 1

strict-EKR 1 3 3 5 5 4 2 - -

without - - - - - 1 1 3 1

q = 16 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 2 3 4 5 6 6 5 4 3 2 1

strict-EKR 1 2 2 3 3 3 1 - - - - -

without - - 1 1 2 3 5 5 4 3 2 1

We thus have e13 = 8, e16 = 5. In these two cases, an extremal
graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 17 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 3 4 10 10 17 17 17 10 10 4 3

strict-EKR 1 3 4 10 10 17 17 16 9 5 1 -

without - - - - - - - 1 1 5 3 3

m 15

#Graphs 1

strict-EKR -

without 1

We thus have e17 = 10, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 19 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 4 5 13 18 31 33 44 33 31 18 13

strict-EKR 1 4 5 13 18 31 33 44 32 30 14 5

without - - - - - - - - 1 1 4 8

m 15 16 17

#Graphs 5 4 1

strict-EKR - - -

without 5 4 1

We thus have e19 = 11, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 23 :

m 3 4 5 6 7 8 9 10 11 12 13

#Graphs 1 4 6 22 36 83 125 196 227 268 227

strict-EKR 1 4 6 22 36 83 125 196 227 268 226

without - - - - - - - - - - 1

m 14 15 16 17 18 19 20 21

#Graphs 196 125 83 36 22 6 4 1

strict-EKR 195 120 73 19 ≥ 1 - - -

without 1 5 10 17 ≥ 1 6 4 1

We thus have e23 = 13, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 25 :

m 3 4 5 6 7 8 9 10 11 12 13

#Graphs 1 4 7 19 34 79 132 223 293 379 391

strict-EKR 1 4 7 18 33 75 121 185 208 198 108

without - - - 1 1 4 11 38 85 181 283

m 14 15 16 17 18 19 20 21 22 23

#Graphs 379 293 223 132 79 34 19 7 4 1

strict-EKR 34 3 1 - - - - - - -

without 345 290 222 132 79 34 19 7 4 1

We thus have e25 = 6, and an extremal graph is unique.



Main problem

This talk is mainly devoted to the following problem.

Problem 6
Determine all extremal Peisert-type graphs without strict-EKR
property.



Main results (I)

Theorem 8 ([GY23, Theorem 1.3])

Let q = pn, where p is a prime and n is a positive integer. Let
X be an extremal Peisert-type graph defined over Fq2.

▶ If n = 1 and p ≥ 3, then X is of type (p+3
2 , p) and X is

unique up to isomorphism.

▶ If n > 1, then X is of type (pn−k + 1, q), where k is the
largest proper divisor of n.

Note that the result in the case n = 1 follows from some known
results from the theory of directions in affine planes, and the
case n > 1 was newly developed.

We also note that, in the case n > 1, for any prime power q, we
constructed an explicit example of an extremal Peisert-type
graph without strict-EKR property (of type (pn−k + 1, q), where
k is the largest proper divisor of n).

[GY23] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, June 2023, https://arxiv.org/abs/2206.15341

https://arxiv.org/abs/2206.15341


Main results (II)

Theorem 9 ([GY23, Theorem 1.4])

Let q be the square of a prime power. There are exactly
(q + 1)

√
q extremal Peisert-type graph defined over Fq2 and each

Peisert-type graph of type (3, q) is a subgraph of exactly one
such extremal graph. Moreover, if X is such an extremal graph,
then the following statements hold:

▶ X is unique up to isomorphism: in fact, X is isomorphic
to the affine polar graph V O+(4,

√
q).

▶ X has exactly
√
q + 1 canonical cliques containing 0, and√

q + 1 non-canonical cliques containing 0; moreover, these
2(
√
q + 1) cliques lie in the same orbit under the action of

the automorphism group of X.

▶ There is no Hilton-Milner type result: all maximal cliques
in X are maximum cliques.

▶ The weight-distribution bound is tight for both
non-principal eigenvalues of X.



Main results (III)

Theorem 10 ([GY23, Theorem 1.5])

Let q = r3, where r is a prime power and a non-square. There
are exactly r(r5 + r4 + r3 + r2 + r + 1) extremal Peisert-type
graphs defined over Fq2. Moreover, if X is such an extremal
graph, then the following statements hold:

▶ X is unique up to isomorphism.

▶ Maximum cliques in X can be explicitly determined. In
particular, X has exactly r2+1 canonical cliques containing
0, and r2 + r + 1 non-canonical cliques containing 0.

[GY23] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, June 2023, https://arxiv.org/abs/2206.15341

https://arxiv.org/abs/2206.15341


Main results (IV)

Let q = 25. Let ε be a primitive element in Fq such that ε is a
root of the irreducible polynomial t5 + t2 + 1 ∈ F2[t]. Let β be a
root of the irreducible polynomial t2 + t+ 1 ∈ F2[t]; note that
β ∈ Fq2 \ Fq. Consider the Peisert-type graph X1 induced by
the F2-subspace V1 generated by the elements
{1, ε, β, ε16β, ε21 + ε9β}, that is, X1 = Cay(F+

q2
, V1(Fq \ {0})).

Similarly, consider the Peisert-type graph X2 induced by the
F2-subspace V2 generated by the elements {1, ε, ε2, ε3, β}.

For i ∈ {1, 2}, it is easy to verify that Vi is a non-canonical
clique in Xi and Xi is a Peisert-type graph of type (17, 32).
Thus, in view of Theorem 8, X1 and X2 are extremal graphs.
We have verified that X1 is not isomorphic to X2, showing that
there are at least 2 non-isomorphic extremal Peisert-type
graphs defined over Fq2 .



The set of directions of a subsets of points of an affine
plane

Let U be a subset of AG(2, q); the set of directions determined
by U is defined to be

D(U) := {[a− c : b− d] : (a, b), (c, d) ∈ U, (a, b) ̸= (c, d)} ⊂ PG(1, q).

The theory of directions has been developed by Rédei [R73],
Szőnyi [S99], and many other authors. It is of particular
interest to estimate |D(U)|.

[R73] L. Rédei, Lacunary polynomials over finite fields, North-Holland

Publishing Co., Amsterdam-London; American Elsevier Publishing Co.,

Inc., New York, 1973. Translated from the German by I. Földes.

[S99] T. Szőnyi, On the number of directions determined by a set of points

in an affine Galois plane, J. Combin. Theory Ser. A, 74(1):141–146, 1996.



Summary of the results on the size of D(U); q is prime

Theorem 11
Let U be a subset of AG(2, p) with |U | = p.

▶ (Rédei [R73]). If the points in U are not all collinear, then
U determines at least p+3

2 directions.

▶ (Lovász and Schrijver [LS83]) If U determines exactly
(p+ 3)/2 directions, then U is affinely equivalent to the set
{(x, x(p+1)/2) : x ∈ Fp} .

▶ (Gács [G03]) If U determines more than p+3
2 directions,

then it determines at least ⌊2p+1
3 ⌋ directions.

[R73] L. Rédei, Lacunary polynomials over finite fields, North-Holland

Publishing Co., Amsterdam-London; American Elsevier Publishing Co.,

Inc., New York, 1973. Translated from the German by I. Földes.

[LS83] L. Lovász, A. Schrijver, Remarks on a theorem of Rédei, Studia Sci.

Math. Hungar., 16 (1983) 449–454.

[G03] A. Gács, On a generalization of Rédei’s theorem. Combinatorica,

23(4):585–598, 2003.



Implications to the theory of directions

Our main results imply an analogue of the result from Theorem
11 when q is a square or a cube (instead of a prime).

In other words, our main results strengthen the results due to
Blokhuis, Ball, Brouwer, Storme, and Szőnyi [B03], [BBBSS99]
in the sense that we classify non-collinear sets U ⊂ AG(2, q)
with q points that determines the minimum number of
directions when q is a square or a cube, as well as such direction
sets.

[BBBSS99] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme, and T. Szőnyi,

On the number of slopes of the graph of a function defined on a finite field,

J. Combin. Theory Ser. A, 86 (1999), no.1, 187–196.

https://doi.org/10.1006/jcta.1998.2915

[B03] S. Ball, The number of directions determined by a function over a

finite field, J. Combin. Theory Ser. A 104 (2003), no. 2, 341–350.

https://doi.org/10.1016/j.jcta.2003.09.006

https://doi.org/10.1006/jcta.1998.2915
https://doi.org/10.1016/j.jcta.2003.09.006


Concluding remarks
In a similar manner, given a prime power q, there exists the
largest value of m, say Eq, such that there exists a Peisert-type
graph of type (m, q) with strict-EKR property; one can also call
such parameter Eq extremal.

A Peisert-type graph of type (Eq, q) with strict-EKR property
is called extremal.

Problem 7
Given a prime power q, determine the value of Eq and
characterise extremal Peisert-type graphs with strict-EKR
property.

From the tables above, we know the numbers Eq for all q ≤ 25.
Moreover, when q is a small square, that is, q ∈ {4, 9, 16, 25}, an
extremal graph with strict-EKR property is unique.

We plan to work on determining the value of Eq and
investigating whether a uniquness result holds for extremal
Peisert-type graphs with strict-EKR property.



Thank you for your attention!


