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Affine planes

An affine plane is a system of points and lines that satisfy the
following axioms:

▶ Any two distinct points lie on a unique line.

▶ Given any line and any point not on that line there is a
unique line which contains the point and does not meet the
given line. (Playfair’s axiom)

▶ There exist three non-collinear points (points not on a
single line).

In an affine plane, two lines are called parallel if they are equal
or disjoint. Using this definition, Playfair’s axiom above can be
replaced by:

▶ Given a point and a line, there is a unique line which
contains the point and is parallel to the line.

The familiar Euclidean plane is an affine plane. In this lecture
we are interested in finite affine planes (that is, affine planes
having finitely many points).



Properties of finite affine planes

If the number of points in an affine plane is finite, then if one
line of the plane contains n points then:

▶ each line contains n points,

▶ each point is contained in n+ 1 lines,

▶ there are n2 points in all, and

▶ there is a total of n2 + n lines.

The number n is called the order of the affine plane.



Affine plane AG(2, q)

Let q be a prime power and W be a 2-dimensional vector space
over the finite fields GF (q).

Then the set of all cosets of 0-dimensional and 1-dimensional
subspaces of W , ordered by inclusion, forms an affine plane of
order q, denoted by AG(2, q).



Identification of the elements of GF (q2) and the points
of AG(2, q)

Let F = GF (q2). Then F can be viewed in a canonical way as a
two-dimensional vector space over GF (q), or, as the affine plane
AG(2, q).

Each nonzero element uniquely defines a line through 0 and can
be viewed as a slope of this line.



Basic properties of finite fields
Let F be a finite field.

▶ If F has characteristic 2, then each element of the
multiplicative group F ∗ is a square.

▶ If F has an odd characteristic, then the multiplicative
group F ∗ has an even number of elements, and exactly a
half of them are squares.

Let F be a finite field of an odd order r. Then the field F is
known to be the splitting field for the polynomial

zr − r = z(z
r−1
2 − 1)(z

r−1
2 + 1).

Moreover, each square from F ∗ is a root of

z
r−1
2 − 1,

and each non-square from F ∗ is a root of

z
r−1
2 + 1.



Lines in AG(2, q)

Let F = GF (q2), where q is an odd prime power.

Let d be a non-square in F ∗. Consider the polynomial
g(z) = z2 − d, which is irreducible over GF (q).

Let α be a root of f . Then we have

F = {x+ yα | x, y ∈ GF (q)}.

Under the indentification, a line in AG(2, q) can be written as

{x1 + y1α+ c(x+ yα) | c ∈ GF (q)},

where x+ yα is a slope.



Quadratic and non-quadratic lines in AG(2, q)

Let F = GF (q2), where q is an odd prime power.

The lines of the plane AG(2, q) are q-subsets with the property
that the difference of two elements is either always a square, or
always a non-square, depending only on the slope of the line.

Thus the lines are partitioned into two classes, S and N (for
square and non-square type). Through each point of AG(2, q)
there pass q+1

2 lines of S and q+1
2 lines of N .

Hence on an arbitrary line l of S not passing through 0, there
are q+1

2 non-squares (indeed, the line parallel to l containing 0
is also in S; consider the lines connecting 0 with a point of l;
note that q−1

2 of them lie in S and q+1
2 of them lie in N ; the

latter ones intersect l in q+1
2 points, which are non-squares).



van Lint & MacWilliams conjecture

In 1978, van Lint and MacWilliams conjectured that the only
q-subset X if GF (q2), with the properties 0, 1 ∈ X and x− y is
a square for all x, y ∈ X, is the set GF (q).

Currently, this conjecture has been proved in several ways, but
the first proof is due to Blokhuis. In this lecture, we discuss the
Blokhuis’ proof in detail.



A general statement in terms of special sets

Let X ⊂ F be a set of points such that all differences are
squares. Call such a set special. Then aX is also special if a is a
square (and “anti-special” if a is a non-square), and X + a is
special for all a. We will consider special q-sets containing 0.

Theorem (Blokhuis, 1984)

Let X be a special q-set. Then X is a line in S.

It is easy to see that this theorem confirms the van Lint &
MacWilliams conjecture.

Furthermore, if 0 ∈ X let X0 := X \ {0}.

The proof will be established in a series of lemmas. Assume
0 ∈ X (if not then a translation will do).



A polynomial criterion for a q-set with 0 to be a line (I)
Let fX(t) :=

∏
x∈X0

(t− x).

Lemma 1
Let X be a q-set in GF (q2) containing 0. The set X is a line if
and only if

fX(t) = tq−1 +
∏
x∈X0

x.

Proof.
(⇒) A line through 0 looks like {ia | i ∈ GF (q)} for some
non-zero element a ∈ GF (q2).
Given a non-zero element j ∈ GF (q), consider

fX(ja) = (ja)q−1 +
∏

i∈GF (q)∗

ia = aq−1 + aq−1
∏

i∈GF (q)∗

i =

= aq−1 − aq−1 = 0.



A polynomial criterion for a q-set with 0 to be a line (II)
Thus, the q − 1 elements of X0 = {ia | i ∈ GF (q)∗} are roots of
the polynomial tq−1 +

∏
x∈X0

x. In means that

tq−1 +
∏
x∈X0

x =
∏
x∈X0

(t− x) = fX(t).

(⇐) Suppose

fX(t) =
∏
x∈X0

(t− x) = tq−1 +
∏
x∈X0

x

holds. For any y1, y2 ∈ X0, we have

0 = fX(y1) = (y1)
q−1 +

∏
x∈X0

x

and
0 = fX(y2) = (y2)

q−1 +
∏
x∈X0

x.



A polynomial criterion for a q-set with 0 to be a line
(III)

It implies that, for any y1, y2 ∈ X, we have (y1)
q−1 = (y2)

q−1

and, consequently, (y−1
1 y2)

q−1 = 1.

This means that y−1
1 y2 ∈ GF (q)∗.

Thus, there exists i ∈ GF (q)∗ such that y2 = iy1. It implies
that X0 = {iy1 | i ∈ GF (q)∗}. □



kth elementary symmetric function of the set X
Let σk(X) denote the kth elementary symmetric function of the
(finite) set X, that is,

∏
x∈X

(1 + xt) =

|X|∑
k=0

σk(X)tk.

In other words, σk(X) denotes the sum of all k-products of
elements from X.

Since

fX(t) =
∏
x∈X0

(t− x) = tq−1 − σ1(X0)t
q−2 + σ2(X0)t

q−3 − . . .

−σq−2(X0)t+ σq−1(X0) =

q−1∑
k=0

(−1)kσk(X0)t
q−1−k,

it suffices to show that σk(X0) = 0 if 0 < k < q − 1.



Reduction to a half of the symmetric functions

Lemma 2
Let X0 ∪ {0} be an arbitrary special q-set. To show that
σk(X0) = 0 for 0 < k < q − 1, it suffices to prove that
σk(X0) = 0 for 0 < k ≤ q−1

2 .

Proof.
First prove that, X−1

0 ∪ {0} is a special q-set. Let x1, x2 ∈ X0

be two arbitrary distinct elements. Then x−1
1 , x−1

2 represent

arbitrary elements in X
(−1)
0 . We have

x−1
1 − x−1

2 = x−1
1 x−1

2 (x2 − x1). Since x−1
1 , x−1

2 and (x2 − x1) are
squares, the set X−1

0 ∪ {0} is a special q-set.
By the assumption of the lemma, we have that σk(X0) = 0 and

σk(X
(−1)
0 ) = 0 for 0 < k ≤ q−1

2 .
Since

σq−1−k(X0) = σk(X
(−1)
0 ) ·

∏
x∈X0

x,

we conclude that σk(X0) = 0 for q−1
2 < k < q − 1.



A decomposition of the set of non-squares

Let A be a set of q+1
2 non-squares such that a− b is a square for

a, b ∈ A (an example of such a set is the collection of
non-squares on a line in S, not through the origin). Call such a
set extra-special.

Lemma 3
Let A be any extra-special set and X be a special q-set
containing 0. Then A ·X0 = {ax | a ∈ A, x ∈ X0} is the set of
all non-squares in F .

Proof.
Obviously, A ·X0 contains only non-squares. Since there are
q2−1
2 products ax involved, it remains to show that all are

different. Suppose a1x1 = a2x2 (a1, a2 ∈ A, x1, x2 ∈ X). Then
a1x1 − a2x1 = a2x2 − a2x1 and (a1 − a2)x1 = a2(x2 − x1). The
element (a1 − a2)x1 is square. The element a2(x2 − x1) is either
non-square or x1 = x2, but then a1 = a2.



Using the decomposition
For an element a ∈ A, put

fX,a(t) =
∏
x∈X0

(t− ax)

Lemma 4
For an extra-special set A and a special q-set X, the equality∏

a∈A
fX,a(t) = t

q2−1
2 + 1

holds.

Proof.
We have∏

a∈A
fX,a(t) =

∏
a∈A
x∈X0

(t− ax) =
∏
n∈F
n∈□̸

(t− n) = t
q2−1

2 + 1.



Main lemma (I)

Lemma 5
Let X0 ∪ 0 be an arbitrary special q-set. Then σk(X0) = 0 for
0 < k ≤ q−1

2 holds.

Proof.
Let m ≤ q−1

2 be the smallest positive integer with the property
σm(X0) ̸= 0 (if there is no such m, we are done).
Then

fX,a(t) = tq−1+(−1)mamσm(X0)t
q−1−m+terms of lower degree.

As a consequence:∏
a∈A

fX,a(t) = t
q2−1

2 + (−1)m(
∑
a∈A

am)σm(X0)t
q2−1

2
−m+

+terms of lower degree.



Main lemma (II)

Since ∏
a∈A

fX,a(t) = t
q2−1

2 + 1

and σm(X0) ̸= 0, it follows that∑
a∈A

am = 0

for all extra-special sets A.

For an extra-special set A and an integer s, put

A(s) = {as | a ∈ A}.



Main lemma (III)
Let us show that, for an extra-special set A, the sets A(−1) and
Aq are extra-special. Take arbitrary a1, a2 ∈ A. It means that
a1, a2 are non-squares and a1 − a2 is a square. Note that
a−1
1 , a−1

2 , aq1, a
q
2 are non-squares. Then

a−1
1 − a−1

2 = (a1a2)
−1(a2 − a1) is a square, and A(−1) is

extra-special. Also, aq1 − aq2 = (a1 − a2)
q is a square, which

means that Aq is extra-special. Hence, A(−q) is extra-special
and we have:∑

a∈A
a−qm = 0 for all extra-special sets A.

Since, for any non-square a, the equality a
q2−1

2 = −1 holds, we
finally have∑

a∈A
a

q2−1
2

−qm = 0 for all extra-special sets A.



Main lemma (IV)

Let t ∈ GF (q2) \GF (q) and take
A = {t+ i | i ∈ GF (q), t+ i ∉ □}. Then

0 = 2
∑

i∈GF (q)
t+i∉□

(t+ i)
q2−1

2
−qm =

=
∑

i∈GF (q)
t+i∈□̸

(t+ i)
q2−1

2
−qm +

∑
i∈GF (q)
t+i∈□̸

(t+ i)
q2−1

2
−qm =

= (
∑

i∈GF (q)
t+i∈□̸

(t+ i)
q2−1

2
−qm +

∑
i∈GF (q)
t+i∈□

(t+ i)
q2−1

2
−qm)+

+(
∑

i∈GF (q)
t+i∉□

(t+ i)
q2−1

2
−qm −

∑
i∈GF (q)
t+i∈□

(t+ i)
q2−1

2
−qm) =



Main lemma (V)

=
∑

i∈GF (q)

(t+ i)
q2−1

2
−qm−

−(
∑

i∈GF (q)
t+i∉□

(t+i)
q2−1

2 (t+i)
q2−1

2
−qm+

∑
i∈GF (q)
t+i∈□

(t+i)
q2−1

2 (t+i)
q2−1

2
−qm) =

=
∑

i∈GF (q)

(t+i)
q2−1

2
−qm−(

∑
i∈GF (q)
t+i∈□̸

(t+i)q
2−1−qm+

∑
i∈GF (q)
t+i∈□

(t+i)q
2−1−qm) =

=
∑

i∈GF (q)

(t+ i)
q2−1

2
−qm −

∑
i∈GF (q)

(t+ i)q
2−1−qm.



Main lemma (VI)

Put

F (t) :=
∑

i∈GF (q)

(t+ i)
q2−1

2
−qm −

∑
i∈GF (q)

(t+ i)q
2−1−qm.

The polynomial F (t) vanishes for all t ∈ GF (q2) \GF (q). Since
F (t) has degree less than q2 − q, it is identically zero.



Main lemma (VII)

Consider the coefficient of tq
2−qm−q in F (t). Since

q2 − qm− q >
q2 − 1

2
− qm,

q2 − q >
q2 − 1

2
,

q(q − 1) >
(q − 1)(q + 1)

2
,

q >
q + 1

2
,

2q > q + 1,

q > 1,

we only need to consider the term
∑

i∈GF (q)

(t+ i)q
2−1−qm of F (t).



Main lemma (VIII)

We apply the binomial theorem

(x+y)n = xn+

(
n

1

)
xn−1y+

(
n

2

)
xn−2y2+. . .+

(
n

n− 1

)
xyn−1+yn

to (t+ i)q
2−1−qm and then sum up by i; this gives(

q2 − qm− 1

q2 − qm− q

) ∑
i∈GF (q)

iq−1 = 0.



Main lemma (IX)

Note that ∑
i∈GF (q)

iq−1 = q − 1 ≡ −1 (mod p),

where p is the characteristic of GF (q). To have a contradiction,

it suffices to show that
(q2−qm−1
q2−qm−q

)
̸≡ 0 (mod p). We have(

q2 − qm− 1

q2 − qm− q

)
=

(q2 − qm− 1)!

(q2 − qm− q)! · (q − 1)!
=

=
(q2 − qm− 1)(q2 − qm− 2) . . . (q2 − qm− (q − 1))

1 · 2 · . . . · (q − 1)
=

=

q−1∏
j=1

q2 − qm− j

j
.



Main lemma (X)

Let us show that

q2 − qm− j

j
≡ −1 (mod p).

If p does not divide j, it is clear that

q2 − qm− j

j
≡ −1 (mod p).

Consider the case when p does divide j. Let j = psr for some
positive integers s and r, where p does not divide r. Then

q2 − qm− j

j
=

q2 − qm

psr
− 1 ≡ −1 (mod p).



Main lemma (XI)

Let us show that p divides q2−qm
psr = q(q−m)

psr . Let q = pn for some
positive integer n. Then we have

q(q −m)

psr
=

pn−s(q −m)

r
.

It suffices to show that n− s ≥ 1. We have

pn = q > j = psr,

pn−s > r ≥ 1,

which means that n− s > 0. □



Concluding remarks

In this lecture we have considered the Blokhuis proof of van
Lint & MacWilliams conjecture.

In the next lecture we will discuss why the quadratic lines in
AG(2, q) can be viewed as canonical cliques in the Paley graph
P (q2), and the Blokhuis’ result can be viewed as establishing
strict EKR-property for Paley graphs of square order.



Thank you for your attention!


