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Erdős–Ko–Rado theorem

The Erdős–Ko–Rado theorem, one of the fundamental results in
combinatorics, provides information about systems of
intersecting sets. A family A of subsets of a ground set — it
might as well be {1, . . . , n} — is intersecting if any two sets in
A have at least one point in common.

More generally a family A of subsets is t-intersecting if any two
elements of A have at least t points in common.

Theorem 1 (Erdős–Ko–Rado, 1961)

Let k and n be integers with n ≥ 2k. If A is an intersecting
family of k-subsets of {1, . . . , n}, then

|A| ≤
(
n− 1

k − 1

)
.

Moreover, if n > 2k, equality holds if and only if A consists of
all the k-subsets that contain a given point from {1, . . . , n}.



Extensions of Erdős–Ko–Rado theorem (I)

This theorem has two parts: a bound and a characterisation of
families that meet the bound.

One reason this theorem is so important is that it has many
interesting extensions. To address these, we first translate it to
a question in graph theory. The Kneser graph K(n, k) has all
k-subsets of {1, . . . , n} as its vertices, and two k-subsets are
adjacent if they are disjoint. (We assume n ≥ 2k to avoid
trivialities.)

Then an intersecting family of k-subsets is a coclique in the
Kneser graph, and we see that the EKR theorem characterises
the cocliques of maximum size in the Kneser graph.

So we can seek to extend the EKR theorem by replacing the
Kneser graphs by other interesting families of graphs.

There is a second class of extensions of the EKR theorem. In
their paper Erdős, Ko and Rado proved the following:



Extensions of Erdős–Ko–Rado theorem (II)

Theorem 2 (Erdős–Ko–Rado, 1961)

Let n, k and t be positive integers with 0 ≤ t ≤ k. There exists a
function f(k, t) such that if n ≥ f(k, t) and A is a t-intersecting
family of k-subsets of {1, . . . , n}, then

|A| ≤
(
n− t

k − t

)
.

Moreover, equality holds if and only if A consists of the
k-subsets that contain a specified t-subset of {1, . . . , n}.
There are graph-theoretic analogues of this question too. In
place of the Kneser graphs, we use the Johnson graphs J(n, k).
The vertices of J(n, k) are the k-subsets of {1, . . . , n}, but now
two k-subsets are adjacent if they have exactly k − 1 points in
common. Again we assume n ≥ 2k. The graph J(n, k) has
diameter k and thus two k-subsets are adjacent in K(n, k) if
and only if they are at maximum possible distance in J(n, k).



Extensions of Erdős–Ko–Rado theorem (III)

Define the width of a subset of the vertices of a graph to be the
maximum distance between two vertices in the subset.

Then our first version of the EKR theorem characterises the
subsets of maximum size in J(n, k) of width k − 1, and the
second version the subsets of maximum size with width k − t.

All known analogues of the EKR theorem for t-intersecting sets
can be stated naturally as characterisations of subsets of width
d− t in a graph of diameter d. However, such theorems have
only been proved in cases where the distance graphs form an
association scheme (they fit together in a particularly nice way).

To give one example, we can replace k-subsets of {1, . . . , n} by
subspaces of dimension k over a vector space of dimension n
over GF (q).



Canonical t-intersecting families
It is easy to find small intersecting families; the basic problem is
to decide how large they can be, and to describe the structure
of the families that meet whatever bound we can derive.

The second version of the theorem is clearly more general than
the first one, but has the weakness that its conclusion holds
only if n is greater than some unspecified lower bound.

We call a collection of subsets of {1, . . . , n} a set system with
underlying set {1, . . . , n}; if the subsets all have size k we refer
to it as a k-set system.

The easiest way to build a t-intersecting k-set system on an
n-set is to simply take all k-subsets that contain a fixed t-set;
clearly such a system has size(

n− t

k − t

)
.

We call a set system of this type a canonical t-intersecting
family.



Lower bound for n
The lower bound on n in Theorem 2 is necessary because when
n is not large enough, an intersecting family of maximal size
need not be canonical.

Much work was devoted to determining the precise value of
f(n, k) needed.

Examples show that we need n ≥ (t+ 1)(k − t+ 1) for the
bound to hold, and in 1978 Frankl proved that this constraint
sufficed when t was large enough.

In 1984, Wilson proved that the bound in the EKR theorem
holds if n ≥ (t+ 1)(k − t+ 1), and the characterisation holds
provided n > (t+ 1)(k − t+ 1).

In 1997 Ahlswede and Khachatrian determined the largest
t-intersecting k-set systems on an n-set, for all values of n.

The result of this work is that, for each choice of n, k and t, we
know that maximum size of the t-intersecting families and we
know the structure of the families that reach this size.



The Hilton-Milner theorem (I)

Erdős, Ko and Rado conjectured that the largest 1-intersecting
system that was not a subset of the canonical intersecting set
system is the set of all k-subsets that contain at least two
elements from a fixed set of three elements. It turns out that
this conjecture is not true; the actual maximum sets were given
by Hilton and Milner.

Hilton and Milner proved that the largest intersecting system
that is not a subset of a canonical intersecting system can be
constructed as follows. Let F0 be the set system of all k-sets
that contain the element 1, and let A = {2, 3, . . . , k + 1}. Define
F ′ to be the system of all the sets in F0 that intersect A,
together with the set A. This system is intersecting and has size(

n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.



The Hilton-Milner theorem (II)

The next result is known as the Hilton–Milner theorem.

Theorem 3 (Hilton-Milner, 1967)

Let k and n be positive integers with 2 ≤ k ≤ n
2 . Let A be an

intersecting k-set system on an n-set such that
⋂

A∈A
A = ∅. Then

|A| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Moreover, for k > 3, equality holds if and only if A is
isomorphic to the system of all sets in F0 that intersect
{2, . . . , k + 1} together with the set {2, . . . , k + 1}; for k = 3
there are two non-isomorphic systems that meet this bound, the
one described above and one more.



The goal of this lecture

In this minicourse, we consider the first way to extend the EKR
theorem. In order to do this, we need to define the notion of
‘intersecting’ for the vertices of the graphs we consider. Once
we have done this, we can define the notion of canonical
intersecting families in these graphs.

In this lecture we consider two important families of strongly
regular graphs for which the notion of canonical intersecting
families (canonical cliques) is well defined:

▶ block graphs of orthogonal arrays (including Paley graphs
of square order);

▶ block graphs of 2-(n,m, 1) designs.



EKR properties

Given any graph X for which we can describe its canonical
cliques (that is, typically cliques with large size and simple
structure), we can ask whether X has any of the following three
related Erdős-Ko-Rado (EKR) properties:

▶ EKR property: the clique number of X equals the size of
canonical cliques.

▶ EKR-module property: the characteristic vector of each
maximum clique in X is a Q-linear combination of
characteristic vectors of canonical cliques in X.

▶ strict-EKR property: each maximum clique in X is a
canonical clique.

Given a graph X for which an analogue of the Erdős–Ko–Rado
theorem is obtained, it is natural to asked whether an analogue
of the Hilton-Milner theorem can be established (such a result
is also called a stability result since this shows what are second
largest maximal (w.r.t. inclusion) cliques in these graphs).



EKR-type results

The classical Erdős-Ko-Rado theorem [EKR61] classified
maximum intersecting families of k-element subsets of
{1, 2, . . . , n} when n ≥ 2k + 1.

Since then, EKR-type results refer to understanding maximum
intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book
[GM15] by Godsil and Meagher provides an excellent survey on
the modern algebraic approaches to proving EKR-type results
for permutations, set systems, orthogonal arrays, and so on.

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems

of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Orthogonal arrays and their block graphs

An orthogonal array OA(m,n) is an m× n2 array with entries
from an n-element set T with the property that the columns of
any 2× n2 subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted
XOA(m,n), is defined to be the graph whose vertices are columns
of the orthogonal array, where two columns are adjacent if there
exists a row in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i
in row r. These sets are cliques, and since each element of the
n-element set T occurs exactly n times in each row, the size of
Sr,i is n for all i and r. These cliques are called the canonical
cliques in the block graph XOA(m,n).

A simple combinatorial argument shows that the block graph of
an orthogonal array is strongly regular. Moreover, by the
Delsarte bound, a clique in XOA(m,n) has size at most n, and
the canonical cliques show the tightness of this bound.



Intersecting columns in an arthogonal array

If we view columns of an orthogonal array that have the same
entry in the same row as intersecting columns, then we can view
the Delsate bound as the bound in the EKR theorem for
intersecting columns of an orthogonal array. The question is,
under what conditions will all cliques of size n in the graph
XOA(m,n) be canonical? The following answer can be viewed
as the uniqueness part of the EKR theorem.

Theorem 4 ([GM15, Corollary 5.5.3])

Let X = XOA(m,n) be the block graph of an orthogonal array
OA(m,n) with n > (m− 1)2. Then X has the strict-EKR
property: the only maximum cliques in X are the columns that
have entry i in row r for some 1 ≤ i ≤ n and 1 ≤ r ≤ m.

This is equivalent to saying that the largest set of intersecting
columns in an orthogonal array is the set of all columns that
have the same entry in the some row, and these sets are the
only maximum intersecting sets.



Open problems for the block graphs of orthogonal arrays

Problem 1
Find a characterisation of the orthogonal arrays, based only on
the parameters of the array, for which all of the maximum
cliques in the orthogonal array graph are canonical cliques.

Problem 2
Assume that OA(m, (m− 1)2) is an orthogonal array and its
orthogonal array graph has non-canonical cliques of size
(m− 1)2. Do these non-canonical cliques form subarrays?

[GM15, Section 5.5] provides an example of non-canonical
cliques in the block graph of an orthogonal array that form
subarrays. In Lecture 4, we discuss a subfamily of affine polar
graphs that can be viewed as block graphs of orthogonal arrays
containing non-canonical cliques having subarray structure.

Problem 3
Determine all the maximum cliques in the block graph for any
orthogonal array.



Peisert-type graphs
Let q be a prime power. Let S ⊂ F∗

q2 be a union of m ≤ q cosets
of F∗

q in F∗
q2 such that F∗

q ⊂ S, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a

Peisert-type graph of type (m, q). A clique in X is called a
canonical clique if it is the image of the subfield Fq under an
affine transformation.

A Peisert-type graph of type (m, q) can be viewed as a graph on
the points of the affine geometry AG(2, q) with two points being
adjacent whenever the line through these points belongs to one
of m prescribed parallel classes of lines. Peisert-type graphs are
equivalent to the block graphs of orthogonal arrays obtained
from the parallel classes of the affine plane AG(2, q).

Another way to look at Peisert-type graphs is to consider them
as fusions of certain amorphic cyclotomic association schemes.



Intersections of the class of Peisert-type graphs with
some other classes

▶ Paley graphs P (q2) of square order are Peisert-type graphs;

▶ Peisert graphs P ∗(q2), where q ≡ 3 (mod 4), are
Peisert-type graphs (not all Peisert graphs are Peisert-type
graphs);

▶ Generalised Paley graphs GP (q2, d), where d | (q + 1) and
d > 1 (not all generalised Paley graphs are Peisert-type
graphs);

▶ Generalised Peisert graphs GP ∗(q2, d), where d | (q + 1)
and d is even (not all generalised Peisert graphs are
Peisert-type graphs).



Balanced characteristic vectors

A vector in Rn is balanced if it is orthogonal to the all-ones
vector 1. If vS is the characteristic vector of a subset S of the
set V , then we say that

vS − |S|
|V |

1

is the balanced characteristic vector of S.



A question on Paley graphs of square order by Godsil
and Meagher

Any clique of size q in P (q2) is a Delsarte clique, and so its
balanced characteristic vector lies in the −1+q

2 -eigenspace of the
Paley graph. In [GM15, Section 5.9], a possible alternate proof
of Blokhuis’s result is presented; this proof relies on the
following problems.

Problem 4
Show that the −1+q

2 -eigenspace of P (q2) is spanned by the
balanced characteristic vectors of the canonical cliques.

In [AGLY22], we showed that Problem 4 is equivalent to
establishing the EKR-module property for Paley graphs of
square order. Moreover, we established EKR-module property
for all block graphs of orthogonal arrays (including Peisert-type
graphs).

Problem 5
Prove that the only balanced characteristic vectors of sets of size
q, in the −1+q

2 -eigenspace of P (q2), are the balanced
characteristic vectors of the canonical cliques.



Module method

In general, the module method (see [AM15, Section 4]) refers to
the strategy of proving that a graph X satisfies the strict-EKR
property in two steps:

▶ show that X satisfies the EKR-module property

▶ show that EKR-module property implies the strict-EKR
property

As an example of the module method, [AM15, Theorem 4.5]
provides a sufficient condition for the second step above for
2-transitive permutation groups.

[AM15] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some

2-transitive groups, Ann. Comb. 19 (2015), no. 4, 621–640.



Further, we list another recent results related to
EKR-properties of Peisert-type graphs



Subspace structure of Delsarte cliques in Peisert-type
graphs

The following theorem shows all maximum cliques in
Peisert-type graphs of type (m, q), where m ≤ q+1

2 have nice
algebraic structure.

Theorem 5 ([AY22, Theorem 1.2])

Let X be a Peisert-type graph of type (m, q), where q is a power
of an odd prime p and m ≤ q+1

2 . Then any maximum clique in
X containing 0 is an Fp-subspace of Fq2.

It is a good open problem to give symmetric constructions of
Peisert-type graphs with m > q+1

2 with non-canonical cliques.

[AY22] S. Asgarli, C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, J. Combin. Theory

Ser. A 192 (2022), Paper No. 105667, 23 pp.

https://doi.org/10.1016/j.jcta.2022.105667

https://doi.org/10.1016/j.jcta.2022.105667


Erdős–Ko–Rado theorem in Peisert-type graphs (I)

The stability of canonical cliques in Peisert-type graphs has also
been studied. For simplicity, we say a Peisert-type graph X
with order q2 has the property ST (k) if each clique in X with
size at least q − k is contained in a canonical clique in X. From
the definition, it is clear that the strict-EKR property is
equivalent to the property ST (0).

Theorem 6 ([Y23])

As q → ∞, where q is a prime power, almost all Peisert-type

graphs of type ( q+1
2 , q) have the property ST (

√
q
2 ).

Theorem 7 ([Y23])

As p → ∞, where p is prime, almost all Peisert-type graphs of
type (⌊2p−2

3 ⌋, p) have the strict-EKR property, and almost all

Peisert-type graphs of type (p+1
2 , p) have the property ST (p/20).

[Y23] C. H. Yip, Erdős–Ko–Rado theorem in Peisert-type graphs,

https://arxiv.org/abs/2302.00745

https://arxiv.org/abs/2302.00745


Erdős–Ko–Rado theorem in Peisert-type graphs (II)

Theorem 8 ([Y23])

Let n ≥ 2 with the largest proper divisor being t and let q = pn.
As p → ∞, almost all Peisert-type graphs of type (q − o(pt), q)
do not have the strict-EKR property.

[Y23] C. H. Yip, Erdős–Ko–Rado theorem in Peisert-type graphs,

https://arxiv.org/abs/2302.00745

https://arxiv.org/abs/2302.00745


Further investigation

In Lecture 4, we will discuss a recent result stating that the
non-canonical cliques (when exist) in the block graphs of
orthogonal arrays with parameters OA(

√
q+1, q) obtained from

AG(2, q) necessarily have the subarray structure.

An interesting project could arise from the investigation of the
EKR properties of the block graphs of orthogonal arrays with
parameters OA(

√
q + 1, q) obtained from affine planes different

from AG(2, q).

In particular, we plan to examine the database of small
projective planes by Eric Moorhouse (the deletion of a line from
projective plane together with its poits results in an affine plane
that depends on the choice of the deleted line).



Designs

A 2-(n,m, 1) design is a collection of m-sets of an n-set with the
property that every pair from the n-set is in exactly one set.

A specific 2-(n,m, 1) design is denoted by (V,B), where V is the
n-set (which we call the base set) and B is the collection of
m-sets — these are called the blocks of the design.

A 2-(n,m, 1) design may also be called a 2-design.

A simple counting argument shows that the number of blocks in
a 2-(n,m, 1) design is n(n−1)

m(m−1) and each element of V occurs in

exactly n−1
m−1 blocks (this is usually called the replication

number).



EKR-type theorem for 2-designs

The blocks of a 2-design are a set system, and every pair from
the base set occurs in exactly one block. Thus two distinct
blocks of a 2-design must have intersection size 0 or 1. An
intersecting set system from a 2-design is a set of blocks from
the design in which any two have intersection of size exactly 1.

A question that naturally arises: what is the largest possible
such set? Clearly if we take the collection of all blocks that
contain a fixed element, we will have a system of size n−1

m−1 .

An EKR-type theorem for 2-designs would state that this is the
largest possible set of intersecting blocks and determine the
conditions when the only intersecting sets of blocks that has
this size is the set of all blocks that contain a fixed element.
(The first result would be the bound in the EKR theorem, and
the second would be the characterisation.)



Block graph of a 2-(n,m, 1) design

The block graph of a 2-(n,m, 1) design (V,B) is the graph with
the blocks of the design as the vertices in which two blocks are
adjacent if and only if they intersect.

In a 2-design, any two blocks that intersect meet in exactly one
point. The block graph of a design (V,B) is denoted by X(V,B).

Alternatively, we could define a graph on the same vertex set in
which two vertices are adjacent if and only if the blocks do not
intersect — this graph is simply the complement of the block
graph.

A clique in the block graph X(V,B) (or a coclique in its
complement) is an intersecting set system from (V,B).



Designs that are not symmetric are non-trivial

Fisher’s inequality implies that the number of blocks in a
2-design is at least n; if equality holds, the design is said to be
symmetric and the block graph of a symmetric 2-design is the
complete graph Kn. To avoid this trivial case, we assume that
our designs are not symmetric.

Theorem 9
The block graph of a 2-(n,m, 1) design (that is not symmetric)
is strongly regular with parameters

(
n(n− 1)

m(m− 1)
,
m(n−m)

m− 1
, (m− 1)2 +

n− 1

m− 1
− 2,m2).



Canonical cliques of the block graph of a non-trivial
design

The Delsarte bound says that a clique in the block graph of a
2-(n,m, 1) design has size at most n−1

m−1 .

It is not difficult to construct a clique of this size: for any
i ∈ {1, . . . , n} let Si be the collection of all blocks in the design
that contain i. We call the cliques Si the canonical cliques of
the block graph.

From this, we know that a set of intersecting blocks in a
2-design is no larger than the set of all blocks that contain a
common point — this is the bound for an EKR-type theorem
for the blocks in a design.



A sufficient condition for block graphs of 2-designs to
have only canonical maximum cliques (I)

It is not known for which designs the canonical intersecting sets
are the only maximum intersecting sets. Godsil & Meagher
offer a partial result.

Theorem 10
If a clique in the block graph of a 2-(n,m, 1) design does not
consist of all the blocks that contain a given point, then its size
is at most m2 −m+ 1.

Proof.
Assume that C is a non-canonical clique and that the set
{1, . . . ,m} is in C. Divide the other vertices in the clique into
m groups, labeled Gi such that each vertex in group Gi contains
the element i. Assume that G1 is the largest group. Since the
clique is non-canonical, there is a vertex in Gi for some i > 1.



A sufficient condition for block graphs of 2-designs to
have only canonical maximum cliques (II)

All the vertices in G1 must intersect this vertex so each vertex
of G1 must contain one of the m− 1 elements in this vertex
(but not the element i, as 1 and i are both in the set
{1, . . . ,m}). Since no two vertices of G1 can contain the same
element from the vertex in Gi , the size of G1 can be no more
than (m− 1). Since G1 is the largest group the size of the
clique is no more than m(m− 1) + 1. □

A corollary of this is an analogue of the EKR theorem, with the
characterisation of maximum families, for intersecting sets of
blocks in a 2-(n,m, 1) design.

Corollary 1 ([GM15, Corollary 5.3.5])

The only cliques of size n−1
m−1 in the block graph X(V,B) of a

2-(n,m, 1) design with n > m3 − 2m2 + 2m are the sets of
blocks that contain a given point i in {1, . . . , n}.



Example of the block graph of a 2-design for which
there are non-canonical maximum clique

The characterisation in this corollary may fail if
n ≤ m3 − 2m2 + 2m.

For example, consider the projective geometry PG(3, 2). The
points of this geometry can be identified with the 15 nonzero
vectors in a 4-dimensional vector space V over GF (2), and the
lines with the 35 subspaces of dimension 2. This gives us a
design with parameters 2-(15, 3, 1), where each block consists of
the three nonzero vectors in a 2-dimensional subspace. There
are exactly 15 subspaces of V with dimension 3, and each such
subspace contains exactly seven points and exactly seven lines
and so provides a copy of the projective plane of order two. In
the block graph, the seven lines in any one of these projective
planes forms a clique of size 7. In addition, each point of the
design lies on exactly seven lines, and this provides a second
family of 15 cliques of size 7.



Equality case

Theorem 11 ([GM15, Exercise 5.7])

In case n = m3 − 2m2 + 2m, a non-canonical clique in the block
graph of a 2-(n,m, 1) design necessarily forms a (m2 −m,m, 1)
subdesign (which is a projective plane of order m− 1).



Open problems for block graphs of 2-(n,m, 1) designs

Problem 6
Determine a characterisation of the 2-(n,m, 1) designs, based
only on the parameters of the design, for which the only
maximum cliques in the block graph are the canonical cliques.

We have considered an example of a design with a block graph
that has maximum cliques which are not canonical cliques.
These maximum cliques have an interesting structure —
namely, they form a subdesign isomorphic to the Fano plane. It
is not clear if this a result of a wider phenomenon.

Problem 7
When the block graph of a design has maximum cliques that are
not canonical, are the non-canonical cliques isomorphic to
smaller designs?

Problem 8
Determine all the maximum cliques in the block graph for any
2-(n,m, 1) design.



Further investigation

The stated problems suggest a comprehensive investigation of
2-(n,m, 1) designs such that n and m do not satisfy the
inequality.



Known infinite families of 2-designs

Let us have a look at the known infinite families of 2-desings
(equivalently, Steiner systems S(t,m, n) where t = 2). For this,
let us have a look at item 5.11 in [Handbook of Combinatorial
Designs, 2006, Edited By Charles J. Colbourn, Jeffrey H.
Dinitz], which provides the following four known infinite
families of Steiner systems S(2,m, n):

1. S(2, q + 1, qt + . . .+ q + 1), q a prime power, t ≥ 2
(projective 2-designs);

2. S(2, q, qt), q a prime power, t ≥ 2 (affine 2-designs);

3. S(2, q + 1, q3 + 1), q a prime power;

4. S(2, 2r, 2r+s + 2r − 2s), 2 ≤ r < s (Denniston designs).

For family 3, the inequality on n and m is never satisfied. For
family 5, if s < 2r holds, the inequality is not satisfied. So both
families 3 and 4 are non-trivial in the sense of EKR properties.



Projective 2-designs

Projective designs on points and lines in PG(d, q):

▶ If d ≥ 4, the inequality is satisfied, and we have only
canonical cliques in the block graph.

▶ If d = 3, we have equality in this inequality (the inequality
is not satisfied). The block graph in this case is the
Grassmann graph Jq(4, 2). The subgraph induced by the
first neighbourhood of a given vertex is q-clique-extension
of (q + 1)× (q + 1)-lattice. A given vertex lies in q + 1
canonical cliques (say, the rows of the extended lattice) and
in q + 1 non-canonical cliques (resp. the columns of the
extended lattice).

▶ If d = 2, the inequality does not hold, but the design we
have is given by the lines in a projective plane (the block
graph is a clique and we have nothing to do).



Affine 2-designs

Affine designs on points and lines in AG(d, q):

▶ If d ≥ 3, the inequality is satisfied, and we have only
canonical cliques in the block graph.

▶ If d = 2, the inequality does not hold, but the design we
have is given by the lines in an affine plane (the block
graph is a complete multipartite graph and all cliques are
easy to describe).



Maximum cliques in the block graphs of projective and
affine designs

Thus, maximum cliques in the block graphs of projective and
affine designs on points and lines are known.



Concluding remarks

In this lecture we have discussed extensions of the EKR
theorem to two important classes of strongly regular graphs
(block graphs of orthogonal arrays (including Paley graphs of
square order) and block graphs of 2-(n,m, 1) designs). We have
also formulated open problems and discussed possible directions
for investigation.

In the next lecture we will discuss some conjectures whose
statements can viewed as the Hilton-Milner theorem for Paley
graphs of square order and special subclass of Peisert graphs.



Thank you for your attention!


