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What has been discussed so far?

▶ In Lecture 1, we discussed a proof that Paley graphs of
square order have the strict-EKR property.

▶ In Lecture 2, we discussed EKR properties of graphs. In
particular, we started a discussion on EKR properties of
Peisert-type graphs, which are a class of graphs
generalising Paley graphs of square order.

▶ In Lecture 3, we focused on possible analogues of
Hilton-Milner theorem.



Some questions for graphs in flavour of EKR-type
results

1. If we have a family of graphs, is it possible to define the
notion of “intersecting” for vertices, define canonical
cliques and show they are maximum?

2. If the answer for Question 1 is positive, is it possible to
decide whether the canonical cliques are the only maximum
cliques? If there are non-canonical cliques, can we
enumerate them and describe their structure?

3. If the answer for Question 2 is positive (when the
maximum cliques are known), is it possible to decide
whether there exist maximal cliques that are not
maximum. If there are any, can we enumerate second
largest maximal cliques and describe their structure?



Peisert-type graphs

Given an abelian group G and a connection set S ⊂ G \ {0}
with S = −S, the Cayley graph Cay(G,S) is an undirected
graph whose vertices are the elements of G, such that two
vertices g and h are adjacent if and only if g − h ∈ S.

Let p be a prime and q a power of p. Let Fq be the finite field
with q elements, F+

q be its additive group, and F∗
q = Fq \ {0} be

its multiplicative group.

Let S ⊂ F∗
q2 be a union of m cosets of F∗

q in F∗
q2 , where

1 ≤ m ≤ q, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a

Peisert-type graph of type (m, q).



Basic properties of Peisert-type graphs
In this lecture, we discuss many properties of Peisert-type
graphs. Let us start with basic ones.

▶ The class of Paley graphs of square order is a special case
of Peisert-type graphs.

▶ Every Peisert-type graphs of type (m, q) can be naturally
defined on the points of the affine plane AG(2, q) with two
points being adjacent whenver the line through these
points belongs to one of m prescribed parallel classes of
lines; the canonical cliques in a Peisert-type graph of type
(m, q) are exactly the lines from m prescribed parallel
classes defining the graph.

▶ The affine plane AG(2, q) can be viewd as an orthogonal
(q + 1)× q2-array OA(q + 1, q); every Peisert-type of type
(m, q) graph can be viewed as the block graph of an
orthogonal array OA(m, q) obtained from this array
OA(q + 1, q) by choosing the subset of m rows
corresponding the m prescribed classes of parallel classes.



Number of pairwise non-isomorphic Peisert-type graphs

It is well-known that the stabiliser of the zero point of AG(2, q)
acts 3-transitively on the set of lines through this point; this
implies that, for any prime power q, all Peisert-type graphs of
type (3, q) are isomorphic.

Since the complement of a Peisert-type graph of type (m, q) is a
Peisert-type graph of type (q + 1−m, q), we conclude that the
number of pairwise non-isomorphic Peisert-type graphs of type
(m, q) is equal to the number of pairwise non-isomorphic
Peisert-type graphs of type (q + 1−m, q).

Whenever q ≤ 5, there exists a unique Peisert-type graph of
type (m, q) for any admissible value of m, that is, 1 ≤ m ≤ q.



Extremal Peisert-type graphs without strict-EKR
property

Theorem 1 ([AGLY22])

If q > (m− 1)2, then all Peisert-type graphs of type (m, q) have
the strict-EKR property. Moreover, when q is a square, there
exists a Peisert-type graph of type (

√
q + 1, q) without the

strict-EKR property.

Given a prime power q, there exists the smallest value of m, say
mq, such that there exists a Peisert-type graph without
strict-EKR property; we call such parameter mq extremal.

In Theorem 1, we showed that if q is a square, then
mq =

√
q + 1. In general, we have mq ≥

√
q + 1.

A Peisert-type graph of type (mq, q) without strict-EKR
property is called extremal.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, Electron. J. Combin. 29

(2022), no. 4, #P4.33.



Number of pairwise non-isomorphic Peisert-type graphs

q = 4 : q = 5 :

m 3 4

#Graphs 1 1

strict-EKR - -

without 1 1

m 3 4 5

#Graphs 1 1 1

strict-EKR 1 - -

without - 1 1

q = 7 : q = 8 :

m 3 4 5 6

#Graphs 1 2 1 1

strict-EKR 1 2 - -

without - - 1 1

m 3 4 5 6

#Graphs 1 1 1 1

strict-EKR 1 1 - -

without - - 1 1

We thus have m4 = 3, m5 = 4, m7 = 5 and m8 = 5. In these
four cases, an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 9 :

m 3 4 5 6 7

#Graphs 1 2 2 2 1

strict-EKR 1 1 1 - -

without - 1 1 2 1

q = 11 :

m 3 4 5 6 7 8 9

#Graphs 1 2 2 4 2 2 1

strict-EKR 1 2 2 4 1 1 -

without - - - - 1 1 1

We thus have m9 = 4, m11 = 7. In these two cases, an extremal
graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 13 :

m 3 4 5 6 7 8 9 10 11

#Graphs 1 3 3 5 5 5 3 3 1

strict-EKR 1 3 3 5 5 4 2 - -

without - - - - - 1 1 3 1

q = 16 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 2 3 4 5 6 6 5 4 3 2 1

strict-EKR 1 2 2 3 3 3 1 - - - - -

without - - 1 1 2 3 5 5 4 3 2 1

We thus have m13 = 8, m16 = 5. In these two cases, an
extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 17 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 3 4 10 10 17 17 17 10 10 4 3

strict-EKR 1 3 4 10 10 17 17 16 9 5 1 -

without - - - - - - - 1 1 5 3 3

m 15

#Graphs 1

strict-EKR -

without 1

We thus have m17 = 10, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 19 :

m 3 4 5 6 7 8 9 10 11 12 13 14

#Graphs 1 4 5 13 18 31 33 44 33 31 18 13

strict-EKR 1 4 5 13 18 31 33 44 32 30 14 5

without - - - - - - - - 1 1 4 8

m 15 16 17

#Graphs 5 4 1

strict-EKR - - -

without 5 4 1

We thus have m19 = 11, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 23 :

m 3 4 5 6 7 8 9 10 11 12 13

#Graphs 1 4 6 22 36 83 125 196 227 268 227

strict-EKR 1 4 6 22 36 83 125 196 227 268 226

without - - - - - - - - - - 1

m 14 15 16 17 18 19 20 21

#Graphs 196 125 83 36 22 6 4 1

strict-EKR 195 120 73 19 ≥ 1 - - -

without 1 5 10 17 ≥ 1 6 4 1

We thus have m23 = 13, and an extremal graph is unique.



Number of pairwise non-isomorphic Peisert-type graphs

q = 25 :

m 3 4 5 6 7 8 9 10 11 12 13

#Graphs 1 4 7 19 34 79 132 223 293 379 391

strict-EKR 1 4 7 18 33 75 121 185 208 198 108

without - - - 1 1 4 11 38 85 181 283

m 14 15 16 17 18 19 20 21 22 23

#Graphs 379 293 223 132 79 34 19 7 4 1

strict-EKR 34 3 1 - - - - - - -

without 345 290 222 132 79 34 19 7 4 1

We thus have m25 = 6, and an extremal graph is unique.



Main problem

This lecture is mainly devoted to the following problem.

Problem 1
Determine all extremal Peisert-type graphs without strict-EKR
property.



Main results (I)

Theorem 2 ([GY23, Theorem 1.3])

Let q = pn, where p is a prime and n is a positive integer. Let
X be an extremal Peisert-type graph defined over Fq2.

▶ If n = 1 and p ≥ 3, then X is of type (p+3
2 , p) and X is

unique up to isomorphism.

▶ If n > 1, then X is of type (pn−k + 1, q), where k is the
largest proper divisor of n.

Note that the result in the case n = 1 follows from some known
results from the theory of directions in affine planes, and the
case n > 1 was newly developed.

[GY23] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, June 2023, https://arxiv.org/abs/2206.15341

https://arxiv.org/abs/2206.15341


Main results (II)

Theorem 3 ([GY23, Theorem 1.4])

Let q be the square of a prime power. There are exactly
(q + 1)

√
q extremal Peisert-type graph defined over Fq2 and each

Peisert-type graph of type (3, q) is a subgraph of exactly one
such extremal graph. Moreover, if X is such an extremal graph,
then the following statements hold:

▶ X is unique up to isomorphism: in fact, X is isomorphic
to the affine polar graph V O+(4,

√
q).

▶ X has exactly
√
q + 1 canonical cliques containing 0, and√

q + 1 non-canonical cliques containing 0; moreover, these
2(
√
q + 1) cliques lie in the same orbit under the action of

the automorphism group of X.

▶ There is no Hilton-Milner type result: all maximal cliques
in X are maximum cliques.

▶ The weight-distribution bound is tight for both
non-principal eigenvalues of X.



Main results (III)

Theorem 4 ([GY23, Theorem 1.5])

Let q = r3, where r is a prime power and a non-square. There
are exactly r(r5 + r4 + r3 + r2 + r + 1) extremal Peisert-type
graphs defined over Fq2. Moreover, if X is such an extremal
graph, then the following statements hold:

▶ X is unique up to isomorphism.

▶ Maximum cliques in X can be explicitly determined. In
particular, X has exactly r2+1 canonical cliques containing
0, and r2 + r + 1 non-canonical cliques containing 0.



Main results (IV)

Let q = 25. Let ε be a primitive element in Fq such that ε is a
root of the irreducible polynomial t5 + t2 + 1 ∈ F2[t]. Let β be a
root of the irreducible polynomial t2 + t+ 1 ∈ F2[t]; note that
β ∈ Fq2 \ Fq. Consider the Peisert-type graph X1 induced by
the F2-subspace V1 generated by the elements
{1, ε, β, ε16β, ε21 + ε9β}, that is, X1 = Cay(F+

q2
, V Fq \ {0}).

Similarly, consider the Peisert-type graph X2 induced by the
F2-subspace V2 generated by the elements {1, ε, ε2, ε3, β}.

For i ∈ {1, 2}, it is easy to verify that Vi is a non-canonical
clique in Xi and Xi is a Peisert-type graph of type (17, 32).
Thus, in view of Theorem 2, X1 and X2 are extremal graphs.
We have verified that X1 is not isomorphic to X2, showing that
there are at least 2 non-isomorphic extremal Peisert-type
graphs defined over Fq2 .



Subspace structure of Delsarte cliques in Peisert-type
graphs

Theorem 5 ([AY22, Theorem 1.2])

Let X be a Peisert-type graph of type (m, q), where q is a power
of an odd prime p and m ≤ q+1

2 . Then any maximum clique in
X containing 0 is an Fp-subspace of Fq2.

[AY22] S. Asgarli, C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, J. Combin. Theory

Ser. A 192 (2022), Paper No. 105667, 23 pp.

https://doi.org/10.1016/j.jcta.2022.105667

https://doi.org/10.1016/j.jcta.2022.105667


An explicit infinite family of extremal Peisert-type
graphs without strict-EKR property

Further, for any prime power q that is not a prime, we
introduce an explicit infinite family of extremal Peisert-type
graphs of type (mq, q) without strict-EKR property and discuss
its properties.



Graphs Yq,n

Let q = rn, where r is a prime power and n is prime. Assume
Fq2 = {x+ yβ : x, y ∈ Fq}, where β is a root of an irreducible
polynomial f(t) = t2 + dt+ e ∈ Fq[t].

Considering Frn as a n-dimensional Fr-vector space underlying
the affine space AG(n, r), let H be a an additive coset of a
(n− 1)-dimensional subspace in Frn (equivalently, let H be a
hyperplane in AG(n, r)). Note that |H| = rn−1.

Let
S(H) = F∗

q ∪
⋃
h∈H

(h+ β)F∗
q .

Let Yq,n(H) be the Peisert-type graph of type (rn−1 + 1, rn)
defined by the generating set S(H).

Proposition 1 ([GY23])

For any two hyperplanes H1, H2 in AG(n, r), the graphs
Yq,n(H1) and Yq,n(H2) are isomorphic.

We write Yq,n instead of Yq,n(H).



Given a prime power q, how many graphs Yq,n have we
defined?

Let q = pm, where p is prime and m is an integer, m ≥ 2.

Let d be the number of different prime divisors of m. We have
defined exactly d graphs of Yq,n. Indeed, let k1, . . . , kd be the
divisors of m such that

m/k1, . . . ,m/kd

are different primes and

m/k1 < . . . < m/kd.

Put ni = m/ki and ri = pki . Then, for any i ∈ {1, . . . , d},
q = rni

i holds and we have defined the graphs Yq,n1 , . . . , Yq,nd
.



Graphs Yq,n are Peisert-type graphs without strict-EKR
property

Let q = rn, where r is a prime power and n is a prime.
Consider the graph Yq,n.

Proposition 2 ([GY23])

The following statements hold.
(1) The graph Yq,n is a Peisert-type graph of type (rn−1 + 1, rn).
(2) The graph Yq,n fails to have the strict-EKR property.

Conjecture 1

The graph Yq,n has exactly (rn − 1)/(r − 1) non-canonical
cliques containing 0.

The conjecture was shown to be true when n ∈ {2, 3}.



A classification of extremal Peisert-type graphs without
strict-EKR property

Theorem 6 ([GY23])

Let q = pm, where p is prime and m is an integer m ≥ 2. Let
k1, . . . , kd be the divisors of m such that

m/k1, . . . ,m/kd

are different primes and

m/k1 < . . . < m/kd.

Let n1 = m/k1 and r1 = pk1. Then the following statements
hold.
(1) Yq,n1 is an extremal Peisert-type graph without strict-EKR
property.
(2) If n1 ∈ {2, 3}, then Yq,n1 is the only (up to isomorphism)
extremal Peisert-type graph without strict-EKR property.



Furher classification

If q = 25, then there exists at least two non-isomorphic extremal
graphs without strict-EKR property (Y32,5 and one more).

Problem 2
If q = rn1

1 , r1 and n1 are as above, and n1 ≥ 5, how many
pairwise non-isomorphic extremal Peisert-type graphs of type
(mq, q) without strict-EKR property does there exist?



Graphs Yq,2(Fr) and Xq

Let q = r2. Note that Fr is a hyperplane (a line) in AG(2, r).
Consider the extremal Peisert-type graph Yq,2(Fr) of type
(r + 1, q). We have put H = Fr in the definition of Yq,2(H).

Let Q = {γ ∈ F∗
q | γr+1 = 1}.

Let S =
⋃
δ∈Q

(δ + β)F∗
q .

Let Xq be the Peisert-type graph of type (r + 1, q) defined by
the generating set S.

Theorem 7 ([GY23])

The graphs Yq,2(Fr) and Xq are isomorphic.

Proof.
The generating set S(Fr) can be obtained from S by
multiplication (from the left) by any non-degenerate matrix(
σ σr

1 1

)
, where σ ̸= σr.



A non-canonical clique in Xq

Let ε be a primitive element of Fq. Consider a 2-dimensional

F√
q-subspace in Fq2 :

Cq = (1 + β)F√
q + (ε

√
q + εβ)F√

q

= {(1 + β)a+ (ε
√
q + εβ)b | a, b ∈ F√

q}

= {a+ bε
√
q + (a+ bε)β | a, b ∈ F√

q}

= {(a+ bε)
√
q + (a+ bε)β | a, b ∈ F√

q}

= {γ
√
q + γβ | γ ∈ Fq}

= {γ(γ
√
q−1 + β) | γ ∈ Fq} ⊂ S ∪ {0}.



All non-canonical cliques in Xq

Proposition 3 ([GY23])

The following statements hold.

1. The subspace Cq induces a non-canonical clique in Xq.
Moreover, the intersection of any canonical clique in Xq

containing 0 and Cq has exactly
√
q − 1 nonzero elements

(these elements are given by the elements γ ∈ F∗
q lying in

the same coset of F∗√
q in F∗

q.

2. For any i ∈ {0, 1, . . . ,√q}, the set εiCq induces a
non-canonical clique in Xq, and, for any
i, j ∈ {0, 1, . . . ,√q} such that i ̸= j, we have
εiCq ∩ εjCq = {0}.

3. The
√
q + 1 non-canonical cliques

{Cq, εCq, ε
2Cq, . . . , ε

√
qCq} are the only non-canonical

cliques in Xq containing 0.



Hyperbolic quadric

Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the
hyperbolic quadratic form

HQ(x) = x1x2 + x3x4 + . . .+ x2e−1x2e.

The set HQ+ of zeroes of HQ is called the hyperbolic quadric,
where e is the maximal dimension of a subspace in Q+.

A generator of HQ+ is a subspace of maximal dimension in
HQ+ known to be equal to e.



Affine polar graphs V O+(2e, q)

Denote by V O+(2e, q) the graph on V with two vectors x, y
being adjacent if and only if HQ(x− y) = 0. The graph
V O+(2e, q) is known as an affine polar graph.

Lemma 1 ([BV22])

The graph V O+(2e, q) is a vertex-transitive strongly regular
graph with parameters

v = q2e

k = (qe−1 + 1)(qe − 1)

λ = q(qe−2 + 1)(qe−1 − 1) + q − 2

µ = qe−1(qe−1 + 1)

(1)

and eigenvalues r = qe − qe−1 − 1, s = −qe−1 − 1.

[BV22] A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs,

Cambridge University Press, Cambridge (2022).



Xq is isomoprhic to V O+(4,
√
q)

Let V (n, r) be a n-dimensional vector space over the finite field
Fr, where n ≥ 2 and r is a prime power. Let
f(x1, x2, . . . , xn) : V (n, r) 7→ Fr be a quadratic form on V (n, r).
Define a graph Gf on the set of vectors of V (n, r) as follows:

for any u, v ∈ V (n, r), u ∼ v if any only if f(u− v) = 0.

Two quadratic forms f1(x1, x2, . . . , xn) and f2(y1, y2, . . . , yn) are
said to be equivalent if there exists an invertible matrix
B ∈ GL(n, r) such that f1(Bx) = f2(y).

Lemma 2
Let f1 and f2 be two equivalent quadratic forms. Then the
graphs Gf1 and Gf2 are isomorphic.

Corollary 1 ([GY23])

The graphs Xq and V O+(4,
√
q) are isomorphic.



Well-known facts about affine polar graphs V O+(2e, r)

Proposition 4

The following statements hold.

1. There is a one-to-one correspondence between generators of
HQ+ and maximal cliques in V O+(2e, r) containing the
vector 0.

2. The graph V O+(4, r) has exactly 2(r + 1) maximal cliques
containing zero vector; these are the generators.

3. All maximal cliques of an affine polar graph V O+(2e, r) are
equivalent under the action of the automorphism group.

4. An affine polar graph V O+(2e, r) is a rank 3 graph, that is,
it is arc-transitive and its complement is arc-transitive.

Thus, some of the properties of the extremal graph Xq are
implications of known results on affine polar graphs.



Weight-distribution bound

The following lemma gives a lower bound for the number of
non-zeroes (i.e., the cardinality of the support) for an
eigenfunction of a strongly regular graph, known as the
weight-distribution bound. It is a special case of a more general
result for distance-regular graphs [KMP16, Section 2.4].

Lemma 3
Let X be a primitive strongly regular graph with non-principal
eigenvalues θ1 and θ2, such that θ2 < 0 < θ1. Then an
eigenfunction of X corresponding to the eigenvalue θ1 has at
least 2(θ1 + 1) non-zeroes, and an eigenfunction corresponding
to the eigenvalue θ2 has at least −2θ2 non-zeroes.

[KMP16] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of

q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Tightness of the weight-distribution bound for SRGs
The following lemma gives a combinatorial interpretation of the
tightness of the weight-distribution bound in terms of special
induced subgraphs.

Lemma 4
Let X be a primitive strongly regular graph with eigenvalues
θ2 < 0 < θ1. Then the following statements hold.
(1) For a θ2-eigenfunction f , if the cardinality of support of f
meets the weight-distribution bound, then there exists an
induced complete bipartite subgraph in X with parts T0 and T1

of size −θ2. Moreover, up to multiplication by a constant, f has
value 1 on the vertices of T0 and value −1 on the vertices of T1.
(2) For a θ1-eigenfunction f , if the cardinality of support of f
meets the weight-distribution bound, then there exists an
induced pair of isolated cliques T0 and T1 in X of size
−θ2 = −(−1− θ1) = 1 + θ1. Moreover, up to multiplication by a
constant, f has value 1 on the vertices of T0 and value −1 on
the vertices of T1.



Tightness of the weight-distribution bound for SRGs

(3) If X has Delsarte cliques and each edge of X lies in a
constant number of Delsarte cliques (for example, X is an
edge-transitive strongly regular graph with Delsarte cliques),
then any copy (as an induced subgraph) of the complete bipartite
graph with parts of size −θ2 in X gives rise to an eigenfunction
of X whose cardinality of support meets the weight-distribution
bound and which is of the form given in item (1).
(4) If the complement of X has Delsarte cliques and each edge
of X lies in a constant number of Delsarte cliques (for example,
X is a coedge-transitive strongly regular graph whose
complement has Delsarte cliques), then any copy (as an induced
subgraph) of a pair of isolated cliques of size θ1 + 1 in X gives
rise to an eigenfunction of X whose cardinality of support meets
the weight-distribution bound and which is of the form given in
item (2).



An induced complete bipartite subgraph in Xq

Let T0 = Q and T1 = Qβ. Note that T0 and T1 are subsets of
the lines with slopes 1 and β in AG(2, q). These lines do not
intersect with S and thus are cocliques in Xq, which means that
T0 and T1 are cocliques.

Let γ1 ∈ T0 and γ2β ∈ T1 be two arbitrary elements from the
cocliques T0 and T1. Consider their difference and take into
account that Q is a subgroup of order

√
q + 1 in F∗

q and
−Q = Q:

γ2β − γ1 = γ2 + γ′1β = γ′1(γ2(γ
′
1)

−1 + β) = γ′1(γ
′
2 + β) ∈ S,

where γ′1, γ
′
2 are uniquely determined elements from Q. This

means that T0 ∪ T1 induces a complete bipartite subgraph in Xq

with parts T0 and T1 of size
√
q + 1.



WDB is tight for the negative eigenvalue of
Xq ≃ V O+(4,

√
q)

Define a function f : Fq2 7→ R by the following rule:

f(γ) =


1, γ ∈ T0;
−1, γ ∈ T1;
0, γ ̸∈ T0 ∪ T1.

Proposition 5 ([GY23])

The function f is a (−√
q − 1)-eigenfunction of Xq whose

cardinality of support is 2(
√
q + 1).

Corollary 2 ([GY23])

The weight-distribution bound is tight for the negative
non-principal eigenvalue −√

q − 1 of Xq ≃ V O+(4,
√
q).

Problem 3
Characterise (−√

q − 1)-eigenfunctions of Xq whose cardinality
of support meets the weight-distribution bound 2(

√
q + 1).



Orthogonal arrays and their block graphs
An orthogonal array OA(m,n) is an m× n2 array with entries
from an n-element set W with the property that the columns of
any 2× n2 subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted
DOA(m,n), is defined to be the graph whose vertices are columns
of the orthogonal array, where two columns are adjacent if there
exists a row in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i
in row r. These sets are cliques, and since each element of the
n-element set W occurs exactly n times in each row, the size of
Sr,i is n for all i and r. These cliques are called the canonical
cliques in the block graph DOA(m,n).

A simple combinatorial argument shows that the block graph of
an orthogonal array is strongly regular (see [GM15, Theorem
5.5.1]).

[GM15] C. D. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Peisert-type graphs are block graphs of orthogonal
arrays

In [AGLY22, Theorem 4], we explored the fact that each
Peisert-type graph of type (m, q) can be realised as the block
graph of an orthogonal array OA(m, q). Moreover, there is a
one-to-one correspondence between canonical cliques in the
block graph and canonical cliques in a given Peisert-type graph.

In [GY23], we defined extremal Peisert-type graphs having
non-canonical cliques. In fact, this definition can be naturally
extended to the class of block graphs of orthogonal arrays
obtained from affine planes different from AG(2, q) and having
non-canonical cliques.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, Electron. J. Combin. 29

(2022), no. 4, #P4.33.

[GY23] S. Goryainov, C. H. Yip, Extremal Peisert-type graphs without the

strict-EKR property, June 2023, https://arxiv.org/abs/2206.15341

https://arxiv.org/abs/2206.15341


Complete orthogonal arrays

It is well known that an orthogonal array OA(m,n) is
equivalent to m− 2 mutually orthogonal Latin squares.

Further, it is well known that not more than n− 1 mutually
orthogonal Latin squares of order n exist.

This implies that for an orthogonal array OA(m,n), we
necessarily have m ≤ n+ 1. A set of n− 1 mutually orthogonal
Latin squares (an orthogonal array OA(n+ 1, n)) is called
complete.

It is well known that the existence of a complete set of mutually
orthogonal Latin squares of order n (equivalently, a complete
orthogonal array OA(n+ 1, n)) is equivalent to the existence of
a projective plane of order n, whose existence is known to be
equivalent to the existence of an affine plane of order n.



Generalisation of the notion of extremality

Let A be a complete orthogonal array of type OA(n+ 1, n) and
let A1 be an orthogonal array OA(m,n) obtained as a subset of
rows of A. For such an orthogonal array A1 whose block graph
has non-canonical cliques, we say that the block graph is
A-extremal if the block graphs of all orthogonal arrays of type
OA(m− 1, n) obtained as subsets of rows of A have the
strict-EKR property.

In this sense, extremal Peisert-type graphs considered in this
lecture are AG(2, q)-extremal.



A bound for block graphs of orthogonal arrays

Lemma 5 ([GM15, Corollary 5.5.3 ])

If OA(m,n) is an orthogonal array with n > (m− 1)2, then the
only cliques of size n in DOA(m,n) are canonical cliques.

Let m− 1 be a prime power; then there exists an OA(m,m− 1)
and, using MacNeish’s construction [GM15, p. 98], it is possible
to construct an OA(m, (m− 1)2) from this array.

This larger orthogonal array has OA(m,m− 1) as a subarray,
and thus the graph DOA(m,(m−1)2) has the graph DOA(m,m−1) as
an induced subgraph. Since this subgraph is isomorphic to
K(m−1)2 , it is a clique of size (m− 1)2 in DOA(m,(m−1)2 that is
not canonical.

[GM15] C. D. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Baer subplanes

Let Π be a finite projective (respectively, an affine) plane of
order n and Π0 a projective (respectively, an affine) subplane of
Π of order n0 different from Π; then n0 ≤

√
n. If n0 =

√
n, then

Π0 is called a Baer subplane of Π. Thus, Baer subplanes are the
“biggest” possible proper subplanes of finite planes



Subarray structure of the non-canonical cliques in Xq

Problem 4 ([GM15, Problem 16.4.2])

Assume that OA(m, (m− 1)2) is an orthogonal array and its
orthogonal array graph has non-canonical cliques of size
(m− 1)2. Do these non-canonical cliques form subarrays that
are isomorphic to orthogonal arrays with entries from
{1, . . . ,m− 1}?

Proposition 6 ([GY23])

The non-canonical cliques in Xq correspond to orthogonal
subarrays OA(

√
q + 1,

√
q), which are Baer subplanes in

AG(2, q).

The main implication of this result is that the block graphs of
orthogonal arrays obtained from the affine planes AG(2, q) do
not give a negative answer for Problem 4.

[GM15] C. D. Godsil, K. Meagher, Erdös-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Further problems

The following problem naturally arises.

Problem 5
Let A be an affine plane of order q such that q is the square of a
prime power and A is not isomorphic to the affine plane
AG(2, q). Do the block graphs of the orthogonal arrays obtained
from

√
q + 1 parallel classes of A have non-canonical cliques

without a subarray (Baer-subplane) structure?

In general, the following problem is of interest.

Problem 6
Let A be an affine plane of order q such that A is not
isomorphic to an affine plane AG(2, q). What are A-extremal
block graphs of orthogonal arrays?

Note that Problems 5 and 6 are special cases of the most
general problem (see [GM15, Section 16.4]) of determination all
the maximum cliques in the block graph of an orthogonal array.



Concluding remarks to the final lecture (I)

In this final lecture we have discussed extremal Peisert-type
graphs of type (mq, q) without strict-EKR property (that is,
Peisert-type graphs having non-canonical cliques and the
smallest possible number of canonical cliques). In particular, we
determined the value mq and explicitly constructed an extremal
graph for every prime power q, an in case when q is prime, a
square, or a cube but not a square, we showed the uniqueness of
the extremal graph.

It is interesting question whether the uniqueness result extends
to any other values of q.



Concluding remarks to the final lecture (II)

In a similar manner, given a prime power q, there exists the
largest value of m, say Mq, such that there exists a Peisert-type
graph of type (m, q) with strict-EKR property; one can also call
such parameter Mq extremal.

A Peisert-type graph of type (Mq, q) with strict-EKR property
is called extremal.

Problem 7
Given a prime power q, determine the value of Mq and
characterise extremal Peisert-type graphs with strict-EKR
property.



Concluding remarks to the minicourse

In the frame of this minicourse, we have formulated many
conjectures and open problems. Personally, I am very interested
in all of them and going to work on them with my colleagues
and students. If you have interest in any of them, please let me
know. I would be very happy to have new collaborators and
thus more chances that these problems will be solved.

To conclude, I express my deep gratitude to the organisers and
all participants.



Thank you for your attention!


