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Divisible design graphs

We consider simple graphs, that is graphs, without loops and multiple
edges.

A k-regular graph on v vertices is called a divisible design graph with
parameters (v, k, λ1, λ2,m, n) if its vertex set can be partitioned into
m classes of size n such that any two vertices from the same class has
λ1 common neighbours and any two vertices from different classes
have λ2 common neighbours.

In other words, a divisible design graph is a graph whose adjacency
matrix is an incidence matrix of a (group) divisible design.

The partition of the vertex set of a divisible design graph into classes
is called the canonical partition.
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Motivation for the definition
In 1971, Rudvalis published [R71] the paper “(v, k, λ)-Graphs and
polarities of (v, k, λ)-designs”, where a one-to-one correspondence
between (v, k, λ)-graphs and polarities, with no absolute points, of
(v, k, λ)-designs was established. The motivation was that this gives
an interplay between (strongly regular) graphs and (symmetric)
designs. This connection can be useful for both parts. For example
the easiest construction of a (16, 6, 2) biplane is via the
(16, 6, 2)-graph which is just the line graph of K4,4.

In a similar way, divisible design graphs were first introduced in
[HKM11] as a bridge between graph theory and theory of (group
divisible) designs.

[HKM11] W. H. Haemers, H. Kharaghani, M. A. Meulenberg, Divisible design

graphs, Journal of Combinatorial Theory, Series A, 118(3) (2011) 978–992.

https://doi.org/10.1016/j.jcta.2010.10.003

[R71] A. Rudvalis, (v, k, λ)-Graphs and polarities of (v, k, λ)-designs,

Mathematische Zeitschrift, 120 (1971) 224–230.

https://doi.org/10.1007/BF01117497
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Divisible design graphs: state of art

A complete bibliography on divisible design graphs can be found in
[P]. In particular, a number of characterization results and explicit
constructions are known.

Most of divisible design graphs with less than 40 vertices were
enumerated in [PS22].

[P] D. Panasenko, Online repository of small strictly Deza graphs,

http://alg.imm.uran.ru/dezagraphs/biblio.html

[PS22] D. Panasenko, L. Shalaginov, Classification of divisible design graphs with

at most 39 vertices, Journal of Combinatorial Designs, 30(4) (2022) 205–219.

https://doi.org/10.1002/jcd.21818
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Overview of the new results (I)

Let q be an odd prime power.

We construct [DGHS24] a new family of divisible design graphs based
on the symplectic graphs Sp(4, q).

[DGHS24] B. De Bruyn, S. Goryainov, W. H. Haemers, L. Shalaginov, Divisible

design graphs from the symplectic graph, April 2024.

https://arxiv.org/abs/2404.09902

6 / 40

https://arxiv.org/abs/2404.09902


Overview of the new results (II)

We also show that the complement of symplectic graphs Sp(4, q)
admits three kinds of equitable partitions, that satisfy the
requirements of [HKM11, Construction 4.16] (this construction is
known as the partial complement).

This gives rise to three more infinite families of divisible design
graphs. The smallest graphs in these four families have 40 vertices
and thus cannot be found in [PS22].

Note that at least two of the three kinds of equitable partitions
extend to Sp(2e, q), where e ≥ 2.

[HKM11] W. H. Haemers, H. Kharaghani, M. A. Meulenberg, Divisible design

graphs, Journal of Combinatorial Theory, Series A, 118(3) (2011) 978–992.

https://doi.org/10.1016/j.jcta.2010.10.003

[PS22] D. Panasenko, L. Shalaginov, Classification of divisible design graphs with

at most 39 vertices, Journal of Combinatorial Designs, 30(4) (2022) 205–219.

https://doi.org/10.1002/jcd.21818

7 / 40

https://doi.org/10.1016/j.jcta.2010.10.003
https://doi.org/10.1002/jcd.21818


Overview of the new results (III)

The graph Sp(4, q) can be viewed as the collinearity graph of the
classical generalised quadrangle of type GQ(q, q), denoted by W (3, q).

Let q be a power of 2. There is a non-classical construction of a
generalised quadrangle of type GQ(q − 1, q + 1) based on a hyperoval
embedded into PG(3, q). Recently, we were able to construct more
infinite families of divisible design graphs based on these non-classical
generalised quadrangles.
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Strongly regular graphs

A k-regular graph on v vertices is called a strongly regular graph with
parameters (v, k, λ, µ) if any two adjacent vertices have exactly λ
common neighbours, and any two distinct non-adjacent vertices have
exactly µ common neighbours.

If G is a strongly regular graph, then its complement is also a
strongly regular graph. A strongly regular graph G is primitive if
both G and its complement are connected. If G is not primitive, we
call it imprimitive. The imprimitive strongly regular graphs are
exactly the disjoint unions of complete graphs and their complements,
namely, the complete multipartite graph.

We focus on primitive strongly regular graphs.
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Projective space PG(d, q)

Given an integer d ≥ 1, a prime power q and a (d+ 1)-dimensional
vector space W over Fq, the projective space PG(d, q) of dimension d
is an incidence system whose points, lines, . . . , hyperplanes are,
respectively, 1-dimensional, 2-dimensional, . . . , d-dimensional
subspaces in W , ordered by inclusion.

Note that the projective dimension is 1 less than the corresponding
vector dimension.
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Symplectic graph Sp(2e, q) (I)
Let V be a (2e)-dimensional vector space over a finite field Fq, where
e ≥ 2 and q is a prime power. For any nonzero v ∈ V , denote by [v]
the 1-dimensional subspace generated by v.
Let

K =

(
0 I(e)

−I(e) 0

)
.

The symplectic graph Sp(2e, q) relative to K over Fq is the graph
with the set of 1-dimensional subspaces of V as its vertex set and the
adjacency defined by

[v] ∼ [u] if and only if vKut = 0 for 1-dimensional subspaces [v], [u].

Equivalently, for arbitrary non-zero vectors
v = (v1, . . . , ve, ve+1, . . . , v2e) and u = (u1, . . . , ue, ue+1, . . . , u2e), the
vertices [v] and [u] are adjacent if and only if

e∑
i=1

viue+i −
e∑

i=1

ve+iui = 0.
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Symplectic graph Sp(2e, q) (II)

Lemma 1 ([BV22])

The graph Sp(2e, q) is a rank 3 (in particular, arc-transitive) strongly
regular graph with parameters

v =
q2e − 1

q − 1

k =
q(q2e−2 − 1)

q − 1

λ =
q2(q2e−4 − 1)

q − 1
+ q − 1

µ =
k

q
= λ+ 2

and non-principal eigenvalues r = qe−1 − 1, s = −qe−1 − 1.

[BV22] A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs,

Cambridge University Press, Cambridge (2022).
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Symplectic graph Sp(4, q)

The graph Sp(4, q) can be viewed as a graph on the set of points of
the projective space PG(3, q) with two points being adjacent
whenever orthogonal.

The graph Sp(4, q) is a strongly regular graph with parameters

v = q3 + q2 + q + 1 = (q2 + 1)(q + 1)

k = q(q + 1)

λ = q − 1

µ = q + 1

and non-principal eigenvalues r = q − 1, s = −q − 1.
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Delsarte-Hoffman bound
Let s be the smallest eigenvalue of a k-regular strongly regular graph
G. Delsarte proved [D73] that the clique number of G is at most

1− k

s
.

This bound is known as the Delsarte-Hoffman bound (see [BCN89,
Proposition 1.3.2]).

A clique in a strongly regular graph whose size attains the
Delsarte-Hoffman bound is called a Delsarte clique (see [H21] for
historical remarks).

[BCN89] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs,

Springer-Verlag, Berlin (1989).

[D73] P. Delsarte. An algebraic approach to the association schemes of coding

theory, Philips Res. Rep. Suppl., (10):vi+97, 1973.

[H21] W. H. Haemers, Hoffman’s ratio bound, Linear Algebra and its Applications

Volume 617, (2021) 215–219. https://doi.org/10.1016/j.laa.2021.02.010
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Hoffman bound

Let s be the smallest eigenvalue of a k-regular graph G on v vertices.
Hoffman proved that the independence number of G is at most

v

1− k
s

.

This bound is known as the Hoffman bound (see [BCN89, Proposition
1.3.2]).

A coclique in a regular graph whose size attains the Hoffman bound is
called a Hoffman coclique.

A partition of the vertex set of a regular graph into Hoffman cocliques
is called a Hoffman colouring.

15 / 40



Nexus of a Delsarte clique and a Hoffman coclique

Let G be a strongly regular graph with parameters (v, k, λ, µ) and
smallest eigenvalue s and let C be a Delsarte clique in G. Then every
vertex not in C has exactly µ

−s neighbours in C. The number µ
−s is

called the nexus of the clique C.

Note that, if a strongly regular graph has Delsarte cliques, then all of
them have the same nexus.

Let G be a regular graph with parameters and smallest eigenvalue s
and let C be a Hoffman clique in G. Then every vertex not in C has
exactly −s neighbours in C. The number −s is called the nexus of
the coclique C.

Note that, if a regular graph has Hoffman cocliques, then all of them
have the same nexus.

16 / 40



Delsarte cliques in symplectic graphs Sp(2e, q)

A totally isotropic subspace in PG(2e− 1, q) w.r.t. to a symplectic
quadratic form is a subspace such that any two its points are
orthogonal. It is known that maximal totally isotropic subspaces have
projective dimension e− 1 (vector dimension e) and size
(qe − 1)/(q − 1).

It is known [BV22] that every maximal clique of Sp(2e, q) is a
Delsarte clique and that there is a one-to-one correspondence between
Delsarte cliques in Sp(2e, q) and maximal totally isotropic subspaces
in PG(2e− 1, q).
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Delsarte cliques in Sp(4, q)

For the graph Sp(4, q), the maximal cliques are totally isotropic lines
in PG(3, q) and have size q + 1; all these cliques are Delsarte cliques
with nexus 1.

On the other hand, every line in PG(3, q) that is not totally isotropic
necessarily forms a maximal coclique of size q + 1 in Sp(4, q). Such a
line is called hyperbolic.

Thus, there are two types of lines in PG(3, q) w.r.t. to a symplectic
quadratic form: totally isotropic lines and hyperbolic lines, and they
form all Delsarte cliques and all maximal cocliques of size q + 1 in
Sp(4, q), respectively.
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Conjugate hyperbolic lines

The following lemma introduces a matching on the set of hyperbolic
lines in PG(3, q).

Lemma 2
For any hyperbolic line ℓ in PG(3, q) there exists a uniquely
determined hyperbolic line ℓ′ such that the points of ℓ ∪ ℓ′ induce a
complete bipartite graph Kq+1,q+1 with parts consisting of the points
of ℓ and ℓ′, respectively. Moreover, for any pair ℓ and ℓ′ of such lines
and for any point p not on ℓ and ℓ′, the point p has exactly one
neighbour in ℓ and exactly one neighbour in ℓ′.

Two hyperbolic lines in PG(3, q) that induce a complete bipartite
graph Kq+1,q+1 are called conjugate.
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Symplectic and special spreads
A spread in a three-dimensional projective space PG(3, q) is a set of
lines such that each point of the space is incident with exactly one
line.

A partition of the set of points of PG(2e− 1, q) into maximal totally
isotropic subspaces is called a symplectic spread. It is known [D77]
that symplectic spreads exist for any integer e ≥ 2 and prime power q.
If e = 2, we get a symplectic spread consisting of totally isotropic
lines in PG(3, q).

A spread S in PG(3, q), where q is odd, consisting of hyberbolic lines,
having the property that, for any line ℓ ∈ S, the conjugate line ℓ′ also
belongs to S, is called special.

Note that any two conjugate lines ℓ, ℓ′ from a special spread S induce
a complete bipartite graph Kq+1,q+1 in the symplectic graph Sp(4, q);
moreover, there exists a partition (associated with S) of the vertex set
of Sp(4, q) into such Kq+1,q+1’s.

[D77] R. H. Dye, Partitions and their stabilizers for line complexes and quadrics,

Ann. Mat. Pura Appl. 114 (1977) 173–194 20 / 40



A special spread for q = 3

A regular graph is called a (0,2)-graph if any two distinct vertices
have 0 or 2 common neighbours.

In [BO09], (0, 2)-graphs of valency 8 were classified. It turns out that
the complement of one of the graphs is a divisible design graph with
parameters (40, 31, 22, 24, 10, 4). Moreover, the authors of [BO09]
gave a construction for this graph based on a special spread for q = 3.
We could generalize this construction.

[BO09] A. E. Brouwer, P. R. J. Österg̊ard, Classification of the (0, 2)-graphs of

valency 8, Discrete Mathematics, Volume 309, Issue 3, (2009) 532–547.

https://doi.org/10.1016/j.disc.2008.07.037
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New divisible design graphs (I)
The core of our approach is the notion of a special spread. The
following theorem constructively shows the existence of a special
spread in PG(3, q) for any odd prime power q.

Theorem 1 ([DGHS24])

Given an odd prime power q, there exists at least one special spread in
PG(3, q).

The following theorem thus gives a new construction for infinitely
many divisible design graphs.

Theorem 2 ([DGHS24])

Consider Sp(4, q) and a special spread S. Let Γq,S be the complement
of the graph obtained from Sp(4, q) by removing all the edges of each
Kq+1,q+1 in the partition of the vertex set V (Sp(4, q)) into Kq+1,q+1’s
associated with the spread S. Then the graph Γq,S is a divisible design
graph with parameters

((q2 + 1)(q + 1), q3 + q + 1, q3 − q2 + q + 1, q3 − q2 + 2q, q2 + 1, q + 1).
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New divisible design graphs (II)

We have verified computationally that, for q = 3, 5 and 7, the
projective space PG(3, q) has exactly 1, 2 and 14 pairwise
non-equivalent special spreads, respectively, and that non-equivalent
special spreads give (in Theorem 2) non-isomorphic divisible design
graphs. We generalise this phenomenon in the following theorem.

Theorem 3 ([DGHS24])

Let q be an odd prime power, and S1 and S2 be two non-equivalent
special spreads in PG(3, q). Then the graphs Γq,S1 and Γq,S2 are not
isomorphic.

Thus, the following purely geometric problem is of interest.

Problem 1
Given an odd prime power q, how many pairwise non-equivalent
special spreads does there exist in PG(3, q)? In other words, given an
odd prime power q, how many pairwise non-isomorphic graphs does
Theorem 2 produce?
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Partial complements

Let X be a graph and C1, . . . , Ct be a partition of the vertex set of X
into t parts. Then the graph obtained from X by inverting adjacency
between distinct parts and preserving the edges inside the parts is
called the partial complement of X w.r.t. the partition C1, . . . , Ct.
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Partial complements w.r.t. equitable partitions

Let G be a k-regular graph with the vertex set V (G). Let
Π := (V1, . . . , Vt) be a partition of V (G) into t parts (t-partition).
The partition Π is said to be equitable t-partition if for any
i, j ∈ {1, . . . , t} there is a constant pij such that any vertex from the
part Vi is adjacent to precisely pij vertices from the part Vj .

The canonical partition of a DDG is always an equitable partition.

Lemma 3 ([HKM11, Construction 4.16], Partial complement)

Let Γ be a strongly regular graph with λ = µ. If Γ has a Hoffman
coloring, or an equitable partition into two parts of equal size, then
the partial complement is a divisible design graph.

Note that the complement of Sp(2e, q) is a strongly regular graph
with the property λ = µ. Further, we use special spreads one kind of
equitable 2-partitions of Sp(4, q), use symplectic spreads to construct
two kinds of equitable 2-partitions of Sp(2e, q) and apply Lemma 3 to
produce three more infinite families of divisible design graphs.
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New divisible design graphs (III)

The following theorem is an application of the partial complement to
an equitable 2-partition based on a special spread.

Theorem 4 ([DGHS24])
Consider Sp(4, q) and a special spread S. Partition the vertices of
Sp(4, q) into two parts V1 and V2 of equal size, such that, for every
subgraph Kq+1,q+1 associated with S, one part is in V1 and the other
part is in V2. Let Γ′

q,S be the graph obtained from Sp(4, q) by
replacing the subgraphs induced by V1 and V2 by their complements.
Then Γ′

q,S is a divisible design graph with parameters(
(q2 + 1)(q + 1),

q3 + q2 + 3q + 1

2
,
q3 − q2 + 3q + 1

2
, q2 + q, 2,

(q2 + 1)(q + 1)

2

)
.
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An open problem

We verified that only one graph can be obtained by applying
Theorem 4 to the special spread for q = 3.

Moreover, 12 and 16 graphs, respectively, can be obtained by
applying Theorem 4 to the two special spreads for q = 5. Among
these 28 graphs there are two pairs of isomorphic graphs. Thus, for
q = 5, Theorem 4 gives 26 pairwise non-isomorphic graphs in total.

In case q = 7, we got at least 6000 graphs (from one spread) and
stopped the search.

Problem 2
Given an odd prime power q, how many pairwise non-isomorphic
graphs does Theorem 4 produce?
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New divisible design graphs (IV)

A symplectic spread corresponds to a partition of the vertices of
Sp(2e, q) into Delsarte cliques. With a symplectic spread we can
make two more families of divisible design graphs.

Theorem 5 ([DGHS24])

Consider Sp(2e, q) with e ≥ 2 and a symplectic spread R. Let Γq,e,R be
the graph obtained from Sp(2e, q) by removing the edges of the cliques
in the spread. Then Γq,e,R is a divisible design graph with parameters(

q2e − 1

q − 1
, qe

qe−1

q − 1
, qe

qe−2 − 1

q − 1
,
(qe−1 − 1)2

q − 1
, qe + 1,

qe − 1

q − 1

)
.

In Theorem 5 we find just one divisible design graph for a given
symplectic spread. This construction can be also interpreted as the
partial complement with respect to a Hoffman colouring ([HKM11,
Construction 4.16]).
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New divisible design graphs (V)

Theorem 6 ([DGHS24])

Consider Sp(2e, q) with e ≥ 2 and q odd, and a symplectic spread R.
Partition the vertices of Sp(2e, q) into two parts V1 and V2 of equal
size, such that each part contains (qe + 1)/2 cliques of the spread. Let
Γ′
q,e,R be the graph obtained from Sp(2e, q) by replacing the subgraphs

induced by V1 and V2 by their complements. Then Γ′
q,e,R is a divisible

design graph with parameters(
v =

q2e − 1

q − 1
,
v

2
− qe−1,

v

2
− q2e−2 − qe−1, q2e−2 − qe−1, 2,

v

2

)
.

In Theorem 6 we obtain many non-isomorphic divisible design graphs
with these parameters, because there are exponentially many choices
for the partition into V1 and V2. This construction can be also
interpreted as the partial complement with respect to an equitable
2-partition with equal sizes of parts ([HKM11, Construction 4.16]).
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Open problems on symplectic spreads

In a similar way, we formulate the following open problems on
symplectic spreads.

Problem 3
Given an odd prime power q, how many pairwise non-equivalent
symplectic spreads does there exist in PG(3, q)?

Problem 4
Given an odd prime power q, how many pairwise non-isomorphic
graphs does Theorem 5 produce?

Problem 5
Given an odd prime power q, how many pairwise non-isomorphic
graphs does Theorem 6 produce?
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Generalised quadrangles
A generalised quadrangle is an incidence structure (P,B, I), with
I ⊆ P ×B an incidence relation, satisfying certain axioms. Elements
of P are by definition the points of the generalized quadrangle,
elements of B the lines. The axioms are the following:

1. There is an s (s ≥ 1) such that on every line there are exactly
s+ 1 points. There is at most one point on two distinct lines.

2. There is a t (t ≥ 1) such that through every point there are
exactly t+ 1 lines. There is at most one line through two distinct
points.

3. For every point p not on a line L, there is a unique line M and a
unique point q, such that p is on M , and q on M and L.

(s, t) are the parameters of the generalized quadrangle. The
parameters are allowed to be infinite. If either s or t is 1, the
generalised quadrangle is called trivial. A generalised quadrangle with
parameters (s, t) is often denoted by GQ(s, t).

If (P,B, I) is a generalised quadrangle GQ(s, t), then (B,P, I−1) is
also a generalised quadrangle, of type GQ(t, s), called the dual GQ.
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Collinearity graph of a generalised quadrangle

The collinearity graph of a generalised quadrangle is the graph having
as vertices the points of the generalised quadrangle, with the collinear
points connected.

It is well-known that the collinearity graph of a generalised
quadrangle GQ(s, t) is a strongly regular graph with parameters

((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1).
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Non-classical generalised quadrangles T ∗
2 (O)

Let O be a hyperoval in a (Desarguesian) projective plane π
embedded into PG(3, q), where q is a power of 2.

Let T ∗
2 (O) be the incidence structure whose points are the points of

PG(3, q) that are not in π and whose lines are the lines of PG(3, q)
that are not in π and pass through a point of O.

The incidence structure T ∗
2 (O) is known to be a generalised

quadrangle of type GQ(q − 1, q + 1).
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Collinearity graph of GQ(q − 1, q + 1)

The collinearity graph of a generalised quadrangle GQ(q − 1, q + 1) is
a strongly regular graph with parameters

(q3, (q − 1)(q + 2), q − 2, q + 2)

Then the complement has parameters

(q3, (q + 1)(q − 1)2, q3 − 2q2 − q + 4, q3 − 2q2 − q + 2),

and λ = µ+ 2, in particular.
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A construction of divisible design graphs based on
strongly regular graphs with λ = µ+ 2

The following construction of divisible design graphs was recently
proposed by Panasenko & Shalaginov.

Theorem 7 ([PS22, Construction 16])

Let Γ be a strongly regular with λ = µ+ 2 admitting a Hoffman
colouring {C1, . . . , Cm}(that is, a partition into Hoffman cocliques
C1, . . . , Cm). Let Γ′ be the graph obtained from Γ by joining each two
vertices from Ci for every i ∈ {1, . . . ,m}. Then Γ′ is a divisible
design graph.

However, Panasenko & Shalaginov considered only finitely many
examples of strongly regular graphs satisfying the conditions of this
construction.

[PS22] D. Panasenko, L. Shalaginov, Classification of divisible design graphs with

at most 39 vertices, Journal of Combinatorial Designs, 30(4) (2022) 205–219.

https://doi.org/10.1002/jcd.21818
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Examples from T ∗
2 (O) (I)

Let p be a point of the hyperoval O. Then the sets of points of lines
of T ∗

2 (O) obtained from projective lines through p give a clique spread
of the collinearity graph of T ∗

2 (O), that is, give a Hoffman colouring
in the complementary graph, which has λ = µ+ 2.

Thus, [PS22, Construction 16] produces infinitely many divisible
design graphs.

[PS22] D. Panasenko, L. Shalaginov, Classification of divisible design graphs with

at most 39 vertices, Journal of Combinatorial Designs, 30(4) (2022) 205–219.

https://doi.org/10.1002/jcd.21818
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Collinearity graph of GQ(q + 1, q − 1)

The collinearity graph of a generalised quadrangle GQ(q + 1, q − 1) is
a strongly regular graph with parameters

(q2(q + 2), q(q + 1), q, q)
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Examples from T ∗
2 (O) (II)

The collinearity graph Xq of the dual of T ∗
2 (O) is just the line graph

of T ∗
2 (O) with two lines being adjacent whenever they intersect.

Let P1, . . . , Pq+2 be the points of the hyperoval O, and, for any i in
{1, . . . , q + 2}, let Li be the set of lines of T ∗

2 (O) obtained from the
set of projective lines through Pi. Then for each i the set of lines Li is
a Hoffman coclique of size q2 in Xq, and L1, . . . , Lq+2 is a Hoffman
colouring of Xq. The partial complement w.r.t. to this Hoffman
colouring gives a divisible design graph.

Also, since q is even, it is possible to have an equitable 2-partition of
Xq with parts of equal size where each part is a union of Hoffman
cocliques. Then the partial complement w.r.t. to such an equitable
2-partition gives a divisible design graph.
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Examples from T ∗
2 (O) (III)

Let A be an affine plane in the affine space obtained from PG(3, q) by
removing the projective plane π containing the hyperoval O, such
that the line in π obtained by the projectivisation of A does not
intersect the hyperoval O (a passant).

Let Q1, . . . , Qq2 be the points of A, and, for any j in {1, . . . , q2}, let
Mj be the pencil of lines of T ∗

2 (O) through Qi.

Then for each j the set of lines Lj is a Delsarte clique of size q + 2 in
Xq, and M1, . . . ,Mq2 is a clique spread in Xq.

Since q is even, it is possible to have an equitable 2-partition of Yq
with parts of equal size where each part is a union of Delsarte cliques.
Then the partial complement w.r.t. to such an equitable 2-partition
gives a divisible design graph.
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Thank you for your attention!
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