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1. Equitable partitions of Latin-square
graphs



Equitable partitions

A partition ∆ = {∆1, . . . ,∆r} of the vertex set of a graph Γ is
said to be equitable if there is an r × r matrix M = (mij) such
that the number of vertices of ∆j joined to a vertex ω ∈ ∆i is
mij , depending on i and j but not on the choice of ω.

The spectrum of M is contained in the spectrum of the
adjacency matrix A(Γ) of the graph Γ since the characteristic
polynomial of M divides that of A(Γ) [GR01, Theorem 9.3.3].

The matrix M is called the quotient matrix of the equitable
partition. When we speak of eigenvalues of an equitable
partition, we refer to eigenvalues of the corresponding quotient
matrix.

[GR01] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in

Mathematics, vol. 207, Springer-Verlag, New York, 2001.



Perfect sets

Equitable partitions are also called perfect colourings.

We use the term perfect for a set which is a part of a two-part
equitable partition.

Perfect sets are also known as completely regular codes of
radius 1.



General facts about equitable partitions (I)

Let Γ be a connected regular graph with valency k. Then k is a
simple eigenvalue of A(Γ).

Moreover, the quotient matrix M of an equitable partition has
all row sums equal to k, so that k is an eigenvalue of M . We
call k the principal eigenvalue.

We say that an equitable partition ∆ is µ-equitable if its
quotient matrix M has all nonprincipal eigenvalues equal to µ.

Furthermore, we call a nonempty proper subset S of Ω a
µ-perfect set if the partition {S,Ω \ S} is µ-equitable. Note
that, if a set S is µ-perfect, then so is its complement Ω \ S.



General facts about equitable partitions (II)

Proposition 1.1

Let ∆ = {∆1, . . . ,∆r} be a partition of the vertex set Ω of the
regular connected graph Γ.
(a) If ∆ is µ-equitable, then each set ∆i is µ-perfect.
(b) Conversely, if ∆1, . . . ,∆r−1 are all µ-perfect, then ∆ is
µ-equitable.

Corollary 1.2

Let S be a µ-perfect set, and T a nonempty proper subset of
Ω \ S. Then T is µ-perfect if and only if S ∪ T is µ-perfect.

Corollary 1.3

If ∆ is a µ-equitable partition, then any nontrivial coarsening of
∆ is µ-equitable.



Latin square graphs

A Latin square of order n is an n× n array with entries from an
alphabet of n letters, such that each letter occurs once in each
row and once in each column.

Given a Latin square L, we define the corresponding Latin
square graph Γ(L) whose vertices are the n2 cells of the array
L, two vertices are adjacent iff they lie in the same row or the
same column or contain the same letter.

The graph Γ(L) is strongly regular with eigenvalues

k = 3(n− 1), θ = n− 3 and τ = −3

.



(n− 3)-perfect sets given by a Delsarte clique

Proposition 1.4

Let Γ be a strongly regular graph with positive nonprincipal
eigenvalue θ. Let S be a Delsarte clique in Γ. Then S is a
θ-perfect set in Γ.

Proposition 1.5

Given a Latin square L of order n, a Delsarte clique in Γ(L)
necessary corresponds to cells lying in the same row, lying in
the same column, or having the same letter.

Corollary 1.6

Let S be a row, a column, or a letter. Then S is a
(n− 3)-perfect set in Γ(L).



(n− 3)-perfect sets given by a corner

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

Proposition 1.7

Let L be the Cayley table of a cyclic group of order n and S be
the left upper corner under the secondary diagonal. Then S is a
(n− 3)-perfect set in Γ(L).



Inflation of Latin squares

Take a Latin square L0 of order s.

Replace each occurrence of letter i by a Latin square of order t
in alphabet Ai, where the alphabets for different letters are
pairwise disjoint; this gives a Latin square L of order n = st.

Moreover, given an (s− 3)-perfect set S0 in L0, the
corresponding cells in L form an (n− 3)-perfect set.



Main theorem
The following theorem exhaust (see [BCGG19]) the minimal
(n− 3)-perfect sets (that is, (n− 3)-perfect sets which are not
proper subsets of an (n− 3)-perfect set).

Theorem 1.8 ([BCGG19, Theorem 5.5])

Let S be a minimal (n− 3)-perfect set in the graph of a Latin
square of order n. Then S is a row, a column, a letter, or an
inflation of a corner set.

0 1 2

1 2 0

2 0 1

⇝

3 4 5 6 7 8
4 3 6 5 8 7

6 5 7 8 4 3
5 6 8 7 3 4

8 7 3 4 6 5
7 8 4 3 5 6

[BCGG19] R. A. Bailey, P. J. Cameron, A. L. Gavrilyuk and S. V.

Goryainov, Equitable partitions of Latin-square graphs, Journal of

Combinatorial Designs, Volume 17, Issue 3, March 2019, pages 142–160.



Main corollary

Corollary 1.9 ([BCGG19, Theorem 5.4])

Let Γ(L) be the Latin-square graph defined by a Latin square of
order n, and ∆ a partition of the vertex set of Γ(L). Then ∆ is
(n− 3)-equitable if and only if each part of ∆ is a disjoint union
of rows, columns, letters, or inflations of corner sets.



Open problems (I)

Problem 1.1
Classify (−3)-perfect sets of Latin-square graphs.

Comment to Problem 1.1
Such a set S has the property that it meets any row, column or
letter in a constant number s of cells, and its cardinality is sn.
In particular, with s = 1, such set is a transversal. A
classification of (−3)-perfect sets would imply a solution for the
long standing Ryser’s conjecture, asserting that any Latin
square of odd order has a transversal. Many squares of even
order do too, but some do not (for example, the Cayley table of
the cyclic group). The conjecture is still open despite a lot of
work, so characterising such sets is unlikely to be achieved soon.



Open problems (II)

Problem 1.2
Classify θ-perfect sets of the block-graphs of Steiner triple
systems, where θ is the positive nonprincipal eigenvalue.

Comment to Problem 1.2
There are two known infinite families of strongly regular graphs
with negative nonprincipal eigenvalue τ = −3: Latin-square
graphs and the block graphs of Steiner triple systems.

Problem 1.3
Some families of distance-regular graphs have nonempty
intersection with the family of Latin-square graphs (for
example, bilinear forms graph). Classify their equitable
partitions.

Problem 1.4
Classify equitable partitions of graphs of mutually orthogonal
Latin squares (that is, equitable partitions of the block graphs
of orthogonal arrays).



2. Neumaier graphs



Definitions

A k-regular graph on v vertices is called edge-regular with
parameters (v, k, λ) if every pair of adjacent vertices has λ
common neighbours.

An edge-regular graph with parameters (v, k, λ) is called
strongly regular with parameters (v, k, λ, µ) if every pair of
distinct non-adjacent vertices has µ common neighbours.

A clique in a regular graph is called m-regular if every vertex
that doesn’t belong to the clique is adjacent to precisely m
vertices from the clique. For an m-regular clique, the number m
is called the nexus.



A question by Neumaier
For the clique number ω(Γ) of a strongly regular graph Γ, the
Delsarte-Hoffman bound holds:

ω(Γ) ≤ 1− k

τ
,

where τ is the smallest eigenvalue of Γ.

A clique in a strongly regular graph is regular if and only if it
has 1− k

τ vertices; such a clique is called a Delsarte clique.

In 1981, Neumaier proved [N81] that an edge-regular graph
which is vertex-transitive, edge-transitive, and has a regular
clique is strongly regular.

Neumaier then asked: “Is it true that every edge-regular
graph with a regular clique is strongly regular?”

[N81] A. Neumaier, Regular Cliques in graphs and Special 1 1
2
-designs, Finite

Geometries and Designs, London Mathematical Society Lecture Note

Series, 245–259 (1981).



Neumaier graphs

A non-complete edge-regular graph with parameters (v, k, λ)
containing an m-regular s-clique is said to be a Neumaier graph
with parameters (v, k, λ;m, s).

A Neumaier graph that is not strongly regular is said to be a
strictly Neumaier graph.

For a Neumaier graph, a spread is a partition of the vertex set
into regular cliques.



Two constructions of strictly Neumaier graphs with
1-regular cliques

In [GK18], Greaves and Koolen constructed an infinite family of
strictly Neumaier graphs with 1-regular cliques.

Gavrilyuk and Goryainov then searched for examples in a
collection of known Cayley-Deza graphs [GS14] and found four
more strictly Neumaier graphs with parameters (24, 8, 2; 1, 4).

In [GK19], Greaves and Koolen found ‘another’ infinite family
of strictly Neumaier graphs with 1-regular cliques, which
contains one of the four graphs on 24 vertices.

[GK18] G. R. W. Greaves, J. H. Koolen, Edge-regular graphs with regular

cliques, Europ. J. Combin., 71, 194–201 (2018).

[GK19] G. R. W. Greaves, J. H. Koolen, Another construction of

edge-regular graphs with regular cliques, Discrete Mathematics, 342, Issue

10, (2019) 2818–2820.

[GS14] S. V. Goryainov, L. V. Shalaginov, Cayley-Deza graphs with fewer

than 60 vertices, Siberian Electronic Mathematical Reports, 11, 268–310

(2014) (in Russian).



Strictly Neumaier graphs with 2i-regular cliques

In [EGP19], Evans, Goryainov and Panasenko found a strictly
Neumaier graph containing a 2i-regular clique for every positive
integer i.

The smallest graph in this family has parameters (16,9,4;2,4).

It was also proved that this graph on 16 vertices is the smallest
strictly Neumaier graph (w.r.t the number of vertices).

[EGP19] R. J. Evans, S. V. Goryainov, D. I. Panasenko, The smallest

strictly Neumaier graph and its generalisations, The Electronic Journal of

Combinatorics, 26(2) (2019), #P2.29.



Affine polar graph
Let V be a (2e)-dimensional vector space over a finite field Fq,
where e ≥ 2 and q is a prime power, provided with the
hyperbolic quadratic form Q(x) = x1x2 + x3x4 + . . .+ x2e−1x2e.

The set Q+ of zeroes of Q is called the hyperbolic quadric,
where e is the maximal dimension of a subspace in Q+. A
generator of Q+ is a subspace of maximal dimension e in Q+.

Denote by V O+(2e, q) the graph on V with two vectors x, y
being adjacent iff Q(x− y) = 0.

The graph V O+(2e, q) is known to be a vertex-transitive
strongly regular graph with parameters

v = q2e, k = (qe−1 + 1)(qe − 1),

λ = q(qe−2 + 1)(qe−1 − 1) + q − 2, µ = qe−1(qe−1 + 1).

The Delsate cliques in V O+(2e, q) are necessarily cosets of the
generators.



Affine polar graph

Note that V O+(2e, q) is isomorphic to the graph defined on the
set of all (2× e)-matrices over Fq

{
(

x1 x3 . . . x2e−1

x2 x4 . . . x2e

)
},

where two matrices are adjacent iff the scalar product of the
first and the second rows of their difference is equal to 0.

A spread in V O+(2e, q) is a set of qe disjoint maximal cliques
that correspond to all cosets of a generator.

It is known that the automorphism group of V O+(2e, q) acts
transitively on the set of generators.



The smallest strictly Neumaier graph
Put e = 2 and q = 2, and consider the 1-dimensional subspace

W =

(
∗ 0
0 0

)
.

The subspace W is contained in the two generators

W1 =

(
∗ ∗
0 0

)
and W2 =

(
∗ 0
0 ∗

)
.

Take the vector

v =

(
0 0
1 0

)
and consider the cosets

v +W1 =

(
∗ ∗
1 0

)
, v +W2 =

(
∗ 0
1 ∗

)
,

whose intersection is

v +W =

(
∗ 0
1 0

)
.



The smallest strictly Neumaier graph

The cliques W1 and v +W1 lie in the same spread, have size 4
and are 2-regular, which means that the switching edges
between these cliques preserves the regularity of the graph.

Moreover, the switching edges between the cliques W1, v +W1

gives a graph isomorphic to the complement of the Shrikhande
graph.

The consequent switching edges between the cliques W1, v+W1

and then between the cliques W2, v +W2 gives the smallest
strictly Neumaier graph, which is vertex-transitive, has
parameters (16,9,4;2,4) and contains a spread.



A generalisation of the switching
This idea also works in the general case e ≥ 2.
Take the (e− 1)-dimensional subspace

W =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 0

)
,

The subspace W is contained in the two generators

W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 0 0

)
and W2 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 0 ∗

)
.

Take the vector

v =

(
0 . . . 0 0 0
0 . . . 0 1 0

)
and consider the cosets

v+W1 =

(
∗ . . . ∗ ∗ ∗
0 . . . 0 1 0

)
, v+W2 =

(
∗ . . . ∗ ∗ 0
0 . . . 0 1 ∗

)
,

whose intersection is

v +W =

(
∗ . . . ∗ ∗ 0
0 . . . 0 1 0

)
.



A generalisation of the switching

The cliques W1 and v +W1 lie in the same spread, have size 2e

and are 2e−1-regular, which means that the switching edges
between these cliques preserves the regularity of the graph.

Moreover, the switching edges between the cliques W1, v +W1

gives a strongly regular graph which has parameters the same
as the affine polar graph V O+(2e, 2).

Theorem 2.1 ([EGP19, Theorem 5.1])

The consequent switching edges between the cliques W1, v+W1

and then between the cliques W2, v +W2 gives a strictly
Neumaier graph, which is not vertex-transitive and contains a
2e−1-regular clique of size 2e.

[EGP19] R. J. Evans, S. V. Goryainov, D. I. Panasenko, The smallest

strictly Neumaier graph and its generalisations, The Electronic Journal of

Combinatorics, 26(2) (2019), #P2.29.



Wang-Qiu-Hu switching
Let Γ be a graph whose vertex set is partitioned as C1 ∪C2 ∪D.
Assume that |C1| = |C2| and that the induced subgraphs on C1,
C2, and C1 ∪ C2 are regular, where the degrees in the induced
subgraphs on C1 and C2 are the same. Suppose that all x ∈ D
satisfy one of the following
1. |Γ(x) ∩ C1| = |Γ(x) ∩ C2|, or
2. Γ(x) ∩ (C1 ∪ C2) ∈ {C1, C2}.
The graph Γ′ obtained from Γ by modifying the edges between
C1 ∪ C2 and D as follows is cospectral with Γ:

Γ′(x) ∩ (C1 ∪ C2) :=


C1, if Γ(x) ∩ (C1 ∪ C2) = C2;
C2, if Γ(x) ∩ (C1 ∪ C2) = C1;
Γ(x) ∩ (C1 ∪ C2), otherwise.

[WQH19] W. Wang, L. Qiu, Y. Hu, Cospectral graphs, GM-switching and regular

rational orthogonal matrices of level p, Linear Algebra and its Applications,

Volume 563, 15 (2019), 154–177. [IM19] F. Ihringer, A. Munemasa, New

strongly regular graphs from ginite geometries via switching, Linear Algebra and

its Applications Volume 580, 1 November 2019, Pages 464–474.



Application of WQH-switching

Theorem 2.2 (Evans, G., 2022+)

The switching edges between two regular cliques of V O+(2e, 2)
from the same spread can be viewed as WQH-switching.



Open problems (III)

Problem 2.1
Is it possible to construct new strictly Neumaier graphs from
other classical polar spaces?

Problem 2.2
Is it possible to construct new strictly Neumaier graphs from
other bent functions?

Problem 2.3
Is it possible to have a similar switching between regular cliques
in other strongly regular graphs?

Comment to Problem 2.3
Together with Shamil Asgarli, Rhys Evans and Chi Hoi Yip, we
have an ongoing project on switchings in Peisert-type graphs in
characteristic 2.



3. Erdős-Ko-Rado (EKR) properties of
Peisert-type graphs



Basic definitions

Let p be an odd prime, q a power of p. Let Fq be the finite field
with q elements, F+

q be its additive group, and F∗
q = Fq \ {0} be

its multiplicative group.

Given an abelian group G and a connection set S ⊂ G \ {0}
with S = −S, the Cayley graph Cay(G,S) is the undirected
graph whose vertices are elements of G, such that two vertices g
and h are adjacent if and only if g − h ∈ S.

For a graph X, the clique number of X, denoted ω(X), is the
size of a maximum clique of X.



EKR properties

Given any graph X for which we can describe its canonical
cliques (that is, typically cliques with large size and simple
structure), we can ask whether X has any of the following three
related Erdős-Ko-Rado (EKR) properties:

▶ EKR property: the clique number of X equals the size of
canonical cliques.

▶ EKR-module property: the characteristic vector of each
maximum clique in X is a Q-linear combination of
characteristic vectors of canonical cliques in X.

▶ strict-EKR property: each maximum clique in X is a
canonical clique.



EKR-type results

The classical Erdős-Ko-Rado theorem [EKR61] classified
maximum intersecting families of k-element subsets of
{1, 2, ..., n} when n ≥ 2k + 1.

Since then, EKR-type results refer to understanding maximum
intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book
[GM15] by Godsil and Meagher provides an excellent survey on
the modern algebraic approaches to proving EKR-type results
for permutations, set systems, orthogonal arrays, and so on.

[EKR61] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems

of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



EKR-module property (I)

The EKR-type problems related to a transitive permutation
group G can be reformulated in terms of the EKR properties of
cocliques of the derangement graph Γ(G), or equivalently, the
cliques of the complement. Once we define canonical cocliques
(or cliques), we can discuss the EKR properties of G after
identifying G with Γ(G).

The EKR-module property was first formally defined by
Meagher [M19] in this context: a permutation group G
naturally acts on the vector space W spanned by the
characteristic vectors of canonical cliques, which makes W a
G-module.

[M19] K. Meagher, An Erdős-Ko-Rado theorem for the group PSU(3, q),

Des. Codes Cryptogr. 87 (2019), no. 4, 717–744.



EKR-module property (II)

Each finite 2-transitive group has the EKR property [MSP16].

Meagher and Sin [MS21] recently showed that all finite
2-transitive groups have the EKR-module property. However,
the strict-EKR property does not hold for permutations groups
in general; recently, Meagher and Razafimahatratra [MR21]
have shown that the general linear group GL(2, q) is such a
counterexample.

[MR21] K. Meagher and A. S. Razafimahatratra, Erdős-Ko-Rado results for

the general linear group, the special linear group and the affine general

linear group, arXiv:2110.08972

[MS21] K. Meagher and P. Sin, All 2-transitive groups have the EKR-module

property, J. Combin. Theory Ser. A 177 (2021), Paper No. 105322, 21.

[MST16] K. Meagher, P. Spiga, and P. H. Tiep, An Erdős-Ko-Rado theorem

for finite 2-transitive groups, European J. Combin. 55 (2016), 100–118.



EKR-module property (III)

We remark that our results are of similar flavour, although in
our context of Peisert-type graphs, the corresponding vector
space W does not carry a natural module structure. However,
we remark that the definition of EKR-module property (even
for permutation groups) does not need the additional G-module
structure.



Module method

In general, the module method (see [AM15, Section 4]) refers to
the strategy of proving that a graph Γ satisfies the strict-EKR
property in two steps:

▶ show that Γ satisfies the EKR-module property

▶ show that EKR-module property implies the strict-EKR
property

As an example of the module method, [AM15, Theorem 4.5]
provides a sufficient condition for the second step above for
2-transitive permutation groups.

[AM15] B. Ahmadi and K. Meagher, The Erdős-Ko-Rado property for some

2-transitive groups, Ann. Comb. 19 (2015), no. 4, 621–640.



Blokhuis’ result in terms of ERK properties
Consider the Paley graph Pq2 which is the Cayley graph defined
on the additive group of Fq2 , with the connection set being the
set of squares in F∗

q2 . Clearly, the subfield Fq forms a clique.
Moreover, aFq + b also forms a clique for each a, b ∈ Fq2 where a
is a nonzero square. Such square translates of Fq are the
canonical cliques [GM15, Section 5.9] in this example. Blokhuis
proved that these are precisely the maximum cliques in Pq2 .

Theorem 3.1 ([B84, Theorem])

Let q be an odd prime power. The Paley graph Pq2 satisfies the
strict-EKR property.

Godsil and Meagher [GM15, Section 5.9] call Theorem 3.1 the
EKR theorem for Paley graphs.

[B84] A. Blokhuis, On subsets of GF (q2) with square differences, Indag.

Math. 46 (1984) 369–372.

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Extensions and generalisations of Blokhuis’ result
Extensions and generalisations of Theorem 3.1 can be found in
[BF91],[S99],[M09],[AY21] and [AY21a]. A Fourier analytic
approach was recently proposed in [Y21, Section 4.4].

[BF91] A. A. Bruen and J. C. Fisher, The Jamison method in Galois

geometries, Des. Codes Cryptogr. 1 (1991), no. 3, 199–205.

[S99] P. Sziklai, On subsets of GF (q2) with dth power differences, Discrete

Math. 208/209 (1999), 547–555.

[M09] N. Mullin, Self-complementary arc-transitive graphs and their

imposters (2009). Master’s thesis, University of Waterloo.

[AY21] S. Asgarli and C. H. Yip, Rigidity of maximum cliques in

pseudo-Paley graphs from unions of cyclotomic classes, arXiv:2110.07176

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522

[Y21] C. H. Yip, Gauss sums and the maximum cliques in generalised Paley

graphs of square order, Funct. Approx. Comment. Math. (2021)



Peisert-type graphs
While we have at least three different proofs of Theorem 3.1, all
known proofs rely heavily on advanced tools such as the
polynomial method over finite fields.

Instead, in this work, we follow a purely combinatorial
approach. Although we are not able to give a simple proof of
Theorem 3.1, we prove that a weaker version of Theorem 3.1
extends to a larger family of Cayley graphs, namely
Peisert-type graphs.

Let q be an odd prime power. Let S ⊂ F∗
q2 be a union of m ≤ q

cosets of F∗
q in F∗

q2 such that F∗
q ⊂ S, that is,

S = c1F∗
q ∪ c2F∗

q ∪ · · · ∪ cmF∗
q .

Then the Cayley graph X = Cay(F+
q2
, S) is said to be a

Peisert-type graph of type (m, q). A clique in X is called a
canonical clique if it is the image of the subfield Fq under an
affine transformation.



Some important examples of Peisert-type graphs

The following families of Cayley graphs are Peisert-type graphs
(see [AY21a, Lemma 2.10]):

▶ Paley graphs of square order;

▶ Peisert graph with order q2, where q ≡ 3 (mod 4);

▶ Generalised Paley graphs GP (q2, d), where d | (q + 1) and
d > 1;

▶ Generalised Peisert graphs GP ∗(q2, d), where d | (q + 1)
and d is even.

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522



Peisert-type graphs satisfy the EKR-module property

Blokhuis’ theorem already implies that Paley graphs of square
order possess the EKR-module property. In their book, Godsil
and Meagher ask for an algebraic proof of this statement
[GM15, Problem 16.5.1], which motivates our work.

Our main result answers this problem for a larger family of
Cayley graphs:

Theorem 3.2 ([9, Theorem 1.3])

Peisert-type graphs satisfy the EKR-module property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Orthogonal arrays and their block graphs

An orthogonal array OA(m,n) is an m× n2 array with entries
from an n-element set T with the property that the columns of
any 2× n2 subarray consist of all n2 possible pairs.

The block graph of an orthogonal array OA(m,n), denoted
XOA(m,n), is defined to be the graph whose vertices are columns
of the orthogonal array, where two columns are adjacent if there
exists a row in which they have the same entry.

Let Sr,i be the set of columns of OA(m,n) that have the entry i
in row r. These sets are cliques, and since each element of the
n-element set T occurs exactly n times in each row, the size of
Sr,i is n for all i and r. These cliques are called the canonical
cliques in the block graph XOA(m,n). A simple combinatorial
argument shows that the block graph of an orthogonal array is
strongly regular, and, moreover, the canonical cliques are
Delsarte cliques.



A sufficient condition for the block graph of an
orthogonal array to have strict-EKR property

Theorem 3.3 ([GM16, Corollary 5.5.3], [AGLY22, Theorem
2.8])

Let X = XOA(m,n) be the block graph of an orthogonal array
OA(m,n) with n > (m− 1)2. Then X has the strict-EKR
property: the only maximum cliques in X are the columns that
have entry i in row r for some 1 ≤ i ≤ n and 1 ≤ r ≤ m.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).



Connection between Peisert-type graphs and orthogonal
arrays

The main ingredient in the proof of Theorem 3.2 is the
following connection between Peisert-type graphs and
orthogonal arrays, which is of independent interest.

Theorem 3.4 ([AGLY22, Theorem 1.4])

Each Peisert-type graph of type (m, q) can be realized as the
block graph of an orthogonal array OA(m, q). Moreover, there
is a one-to-one correspondence between canonical cliques in the
block graph and canonical cliques in a given Peisert-type graph.

We then were able to find two explicit eigenbases for the
positive non-principal eigenvalue of the block graph of an
orthogonal array, which led us to the result of Theorem 3.2
(more generally, it led us to the establishing of EKR-module
property for the block graphs of orthogonal arrays).

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



We remark that the idea of viewing certain Cayley graphs
geometrically has appeared in the past; see for example [M09,
Construction 5.2.1] and [AY21a, Section 4.2] for related
discussion. However, Paley graphs and block graphs of
orthogonal arrays are often treated independently; see for
example [GM15, Chapter 5], and [AFMNSR21, Section 5].
Theorem 3.4 is the first to make an explicit connection between
Peisert-type graphs and orthogonal arrays, and allows us to
treat them in a uniform manner.

[M09] N. Mullin, Self-complementary arc-transitive graphs and their

imposters (2009). Master’s thesis, University of Waterloo.

[AY21a] S. Asgarli and C. H. Yip, Van Lint-MacWilliams’ conjecture and

maximum cliques in Cayley graphs over finite fields, arXiv:2106.01522

[GM15] C. D. Godsil, K. Meagher, Erdős-Ko-Rado Theorems: Algebraic

Approaches, Cambridge University Press (2015).

[AFMNSR21] M. Adm, S. Fallat, K. Meagher, S. Nasserasr, M. N. Shirazi,

and A. S. Razafimahatratra, Weakly Hadamard diagonalizable graphs,

Linear Algebra Appl. 610 (2021), 86–119



Strongly regular graphs due to Brouwer, Wilson, and
Xiang that generalise Peisert-type graphs

It is known that the block graph of an orthogonal array is
strongly regular. Thus, Theorem 3.4 also implies the same
conclusion for the Peisert-type graphs. We remark that
Peisert-type graphs form a subfamily of a well-known family of
strongly regular Cayley graphs defined on finite fields due to
Brouwer, Wilson, and Xiang [12]: the connection set is a union
of semi-primitive cyclotomic classes of Fq2 . However, their proof
heavily relied on the fact we can compute semi-primitive Gauss
sums explicitly using Stickelberger’s theorem and its variants;
see [BWX99, Proposition 1] and [AY21, Corollary 3.6]. Theorem
3.4 can be proved using a purely combinatorial argument, thus
giving an elementary proof of the corollary below.

[AY21] S. Asgarli and C. H. Yip, Rigidity of maximum cliques in

pseudo-Paley graphs from unions of cyclotomic classes, arXiv:2110.07176

[BWX99] A. E. Brouwer, R. M. Wilson, and Q. Xiang, Cyclotomy and

strongly regular graphs, J. Algebraic Combin. 10 (1999), no. 1, 25–28.



Peisert-type graphs are strongly regular

Corollary 3.5 ([AGLY22, Corollary 1.5])

A Peisert-type graph of type (m, q) is strongly regular with
parameters (q2,m(q− 1), (m− 1)(m− 2) + q− 2,m(m− 1)) and
eigenvalues k = m(q − 1) (with multiplicity 1), −m (with
multiplicity q2 − 1− k) and q −m (with multiplicity k). In
particular, a Peisert-type graph of type ( q+1

2 , q) is a
pseudo-Paley graph.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



On Peisert-type graphs with strict-EKR property (I)

Corollary 3.6 ([AGLY22, Corollary 1.8])

If q > (m− 1)2, then all Peisert-type graphs of type (m, q)
satisfy the strict-EKR property. In particular, if d > q+1√

q+1 and

d | (q+1), then the d-Paley graph GP (q2, d) has the strict-EKR
property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



On Peisert-type graphs with strict-EKR property (II)

It is natural to examine when a Peisert-type graph X enjoys the
strict-EKR property. While we do not have a general answer to
this problem, we exhibit an infinite family of Peisert-type
graphs which fail to satisfy the strict-EKR property. The
following theorem shows that the condition q > (m− 1)2 in
Corollary 3.6 is sharp when q is a square.

Theorem 3.7 ([AGLY22, Theorem 1.9])

Let q be an odd prime power which is not a prime. Then there
exists a Peisert-type graph X of order q2 such that X fails to
have the strict-EKR property. In particular, if q is a square,
then there exists a Peisert-type graph X of type (

√
q + 1, q)

which fails to have the strict-EKR property.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



Chromatic number and ERK theorem

The chromatic number of a graph X, denoted χ(X), is the
smallest number of colours needed to colour the vertices of X so
that no two adjacent vertices share the same colour.

We remark that one can prove the original EKR theorem using
the (fractional) chromatic number of Kneser graphs [GR01,
Theorem 7.8.1].

It is known that the chromatic number is lower bounded by the
clique number, that is, ω(X) ≤ χ(X).

[GR01] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in

Mathematics, vol. 207, Springer-Verlag, New York, 2001.



On chromatic and clique numbers of generalised Paley
graphs

Broere, Döman, and Ridley [BDR88] showed that if d > 1 and
d | (q + 1), then both the chromatic number and the clique
number of the generalised Paley graph GP (q2, d) is q.

The converse of this result was proved by Schneider and Silva
[SS15, Theorem 4.7].

A stronger converse was proved recently in [Y21].

[BDR88] I. Broere, D. Dőman, and J. N. Ridley, The clique numbers and

chromatic numbers of certain Paley graphs, Quaestiones Math. 11 (1988),

no. 1, 91–93.

[SS15] C. Schneider and A. C. Silva, Cliques and colorings in generalised

Paley graphs and an approach to synchronization, J. Algebra Appl. 14

(2015), no. 6, 1550088, 13.

[Y21] C. H. Yip, Gauss sums and the maximum cliques in generalised Paley

graphs of square order, Funct. Approx. Comment. Math. (2021)



Chromatic and clique numbers of Peisert-type graphs
graphs

Our following theorem computes both the chromatic and the
clique number of all Peisert-type graphs, hence extending the
first result on generalised Paley graphs since GP (q2, d) with
d | (q + 1) is a Peisert-type graph.

Theorem 3.8 ([AGLY22, Theorem 1.7])

Let X be a Peisert-type graph of order q2. Then
ω(X) = χ(X) = q.

[AGLY22] S. Asgarli, S. Goryainov, H. Lin, C. H. Yip, The EKR-module

property of pseudo-Paley graphs of square order, arXiv:2201.03100



Open problems (IV)

Let X be a Peisert-type graph, and W be the vector space
generated by the characteristic vectors of the canonical cliques
in X. As we mentioned above, there is no obvious choice of a
non-trivial group action on W . Finding such a group action,
already in the case of the Paley graph, may give new insights on
the EKR theorems.

Problem 3.1
Does there exist a 2-transitive permutation group G that acts
linearly on the vector space W generated by the characteristic
vectors of canonical cliques in the Paley graph Pq2?

Another problem, motivated by the counterexamples found in
Theorem 3.7, is the following.

Problem 3.2
Characterise Peisert-type graphs with the strict-EKR property.



Open problems (V)

Peisert-type graphs of order q2 can be analogously defined in
the case when q is a power of 2.

Problem 3.3
Investigate EKR properties of Peisert-type graphs in
characteristic 2.

Note that we already have some progress on Problem 3.3.



4. Tightness of the weight-distribution
bound for some strongly regular graphs



Eigenfunctions of graphs

Let Γ = (V,E) be a k-regular graph on n vertices and λ be an
eigenvalue of its adjacency matrix A. Let u = (u1, . . . , un)

t be
an eigenvector of A corresponding to λ. Then u defines a
function fu : V 7→ R, which is called a λ-eigenfunction of Γ.

For an eigenfunction fu of Γ, the support is the set

Supp(fu) := {x ∈ V | fu(x) ̸= 0}.



MS-problem
The following problem was first formulated in [VK15] (see also
[SV21] for the motivation and details).

Problem 4.1 (MS-problem)

Given a graph Γ and its eigenvalue λ, find the minimum
cardinality of the support of a λ-eigenfunction of Γ.

A λ-eigenfunction having the minimum cardinality of support is
called optimal.

Problem 4.2 (Strong MS-problem)

Given a graph Γ and its eigenvalue λ, characterise optimal
λ-eigenfunctions of Γ.

[VK15] K. V. Vorobev, D. S. Krotov, Bounds for the size of a minimal

1-perfect bitrade in a Hamming graph, Journal of Applied and Industrial

Mathematics 9(1) (2015) 141–146.

[SV21] E. Sotnikova, A. Valyuzhenich, Minimum supports of eigenfunctions

of graphs: a survey, Art Discrete Appl. Math. 4 (2021), no. 2, Paper No.

2.09, 34 pp.



A survey on Problem 4.2

Recently, Problem 4.2 was solved for several classes of graphs:

▶ all eigenvalues of Hamming graphs H(n, q) when q = 2 or
q > 4 and some eigenvalues of H(n, q) when q = 3, 4;

▶ all eigenvalues of Johnson graphs (asymptotically);

▶ the smallest eigenvalue of Hamming, Johnson and
Grassmann graphs;

▶ the largest non-principal eigenvalue of a Star graph Sn,
n ≥ 8;

▶ the largest non-principal eigenvalue of Doob graphs.



A survey on Problem 4.1

Excepting the results from the previous slide, Problem 4.1 was
solved for several more classes of graphs:

▶ both non-principal eigenvalues of Paley graphs of square
order;

▶ strongly regular bilinear forms graphs over a prime field.



Weight-distribution bound
Let Γ be a distance-regular graph of diameter D(Γ) with
intersection array (b0, b1, . . . , bD(Γ)−1; c1, c2, . . . , cD(Γ)) and
nonprincipal eigenvalue λ.

Theorem 4.1 (Weight-distribution bound, [KMP16,
Corollary 1])

A λ-eigenfunction f of Γ has at least
D(G)∑
i=0

|Wi| nonzeros, where

W0 = 1,

W1 = λ

and

Wi =
(λ− ai−1)Wi−1 − bi−2Wi−2

ci
.

[KMP16] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of

q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Known results when the weight-distribution bound is
tight

▶ the eigenvalue −1 of the Boolean Hamming graph of an
odd dimension and the minimum eigenvalue of an arbitrary
Hamming graph;

▶ both non-principal eigenvalues of Paley graphs of square
order;

▶ the minimum eigenvalue of Johnson graphs;

▶ the minimum eigenvalue of Grassmann graphs;

▶ the minimum eigenvalue of strongly regular bilinear forms
graphs over a prime field.



Tightness of the weight-distribution bound for the
smallest eigenvalue of a DRG

It was shown in [KMP16] that, for the smallest eigenvalue of a
distance-regular graph Γ, the tightness of the
weight-distribution bound is equivalent to the existence of an
isometric bipartite distance-regular induced subgraph T0 ∪ T1,
where T0 and T1 are parts, such that an optimal eigenfunction,
up to multiplication by a non-zero constant, has the following
form:

f(x) =


1, if x ∈ T0;

−1, if x ∈ T1;

0, otherwise.

[KMP16] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of

q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Tightness of the weight-distribution bound for a
non-principal eigenvalue of an SRG

If Γ is a strongly regular graph with non-principal eigenvalues
θ, τ , where τ < 0 < θ, the following holds.

Theorem 4.2 ([KMP16], Weight-distribution bound for
SRG)

(1) An τ -eigenfunction f of Γ has at least (−2τ) nonzeros;
|Supp(f)| meets the bound if and only if there exists an induced
complete bipartite subgraph with parts T0, T1 of size −τ ;
(2) An θ-eigenfunction f of Γ has at least 2(θ + 1) nonzeros;
|Supp(f)| meets the bound if and only if there exists an induced
disjoint union of two cliques T0, T1 of size θ + 1.

[KMP16] D. S. Krotov, I. Yu. Mogilnykh, V. N. Potapov, To the theory of

q-ary Steiner and other-type trades, Discrete Mathematics 339 (3) (2016)

1150–1157.



Tightness of the weight-distribution bound for Paley
graphs of square order

In [GKSV18], for Paley graphs P (q2), we showed the tightness
of the weight-distribution bound for both non-principal
eigenvalues, which are τ = −1−q

2 and θ = −1+q
2 .

Let β be a primitive element in Fq2 . Put ω := βq−1. Then
Q = ⟨ω⟩ is the subgroup of order q + 1 in F∗

q2 .

Facts about Q:

▶ Q is an oval in the corresponding affine plane;

▶ Q is the kernel of the norm mapping N : F∗
q2 7→ F∗

q , which

means that Q = {γ ∈ F∗
q2 | γq+1 = 1}, or, equivalently,

Q = {x+ yα | x, y ∈ Fq, x
2 − y2d = 1}, where d is a

non-square in F∗
q and α2 = d.

[GKSV18] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On

eigenfunctions and maximal cliques of Paley graphs of square order, Finite

Fields and Their Applications 52 (2018) 361–369.



Tightness of the weight-distribution bound for Paley
graphs of square order

Let Q0 = ⟨ω2⟩ and Q1 = ωQ0.

Facts about Q:
▶ if q ≡ 1(4), then Q = Q0 ∪Q1 induces a complete bipartite

graph with parts Q0 and Q1;
▶ if q ≡ 3(4), then Q = Q0 ∪Q1 induces a pair of disjoint

cliques Q0 and Q1.

Corollary 4.3, [GKSV18, Theorem 2]

The weight-distribution bound is tight for both non-principal
eigenvalues of Paley graphs of square order.

Knowing the structure of Q, we were also able to construct new
maximal cliques of the second largest known size in Paley
graphs of square order (see [GKSV18]).

[GKSV18] S. Goryainov, V. Kabanov, L. Shalaginov, A. Valyuzhenich, On

eigenfunctions and maximal cliques of Paley graphs of square order, Finite

Fields and Their Applications 52 (2018) 361–369.



Generalised Paley graphs of square order; WDB for the
smallest eigenvalue

Let m > 1 be a positive integer. Let q be an odd prime power,
q ≡ 1 (2m). The m-Paley graph on Fq, denoted GP (q,m), is
the Cayley graph Cay(F+

q , (F∗
q)

m), where (F∗
q)

m is the set of
m-th powers in F∗

q .

We consider the graphs GP (q2,m), where q is an odd prime
power and m divides q + 1; these graphs are strongly regular
and form a generalisation of Paley graphs of square order (the
usual Paley graphs of square order are just 2-Paley graphs of
square order).

The eigenvalues of GP (q2,m) are τ = (− q+1
m ) and θ = (m−1)q−1

m .

Given an odd prime power q and an integer m > 1 such that m
divides q + 1, a (− q+1

m )-eigenfunction of the generalised Paley

graph GP (q2,m) has at least 2(q+1)
m non-zeroes.



Structure of Q (I)

Let us divide Q into m parts

Q = Q0 ∪Q1 ∪ . . . ∪Qm−1,

where Q0 = ⟨ωm⟩, Q1 = ωQ0, . . . , Qm−1 = ωm−1Q0.

Proposition 4.4 ([GSY22, Lemma 3.8])

Let q be a prime power and m be an integer such that m > 1,
m divides q + 1. The mapping γ 7→ γq−1 is a homomorphism
from F∗

q2 to Q. Moreover, an element γ is an m-th power in F∗
q2

if and only if γq−1 is an m-th power in Q.

[GSY22] S. Goryainov, L. Shalaginov, C. H. Yip, On eigenfunctions and

maximal cliques of generalised Paley graphs of square order,

arXiv:2203.16081



Structure of Q (II)

Let us divide Q into m parts

Q = Q0 ∪Q1 ∪ . . . ∪Qm−1,

where Q0 = ⟨ωm⟩, Q1 = ωQ0, . . . , Qm−1 = ωm−1Q0.

Proposition 4.5 ([GSY22, Lemma 3.10])

Let γ be an arbitrary element from Q, γ ̸= 1. Then, for the
image of (γ − 1) under the action of the homomorphism, the
following equality holds:

(γ − 1)q−1 = −1

γ
.

[GSY22] S. Goryainov, L. Shalaginov, C. H. Yip, On eigenfunctions and

maximal cliques of generalised Paley graphs of square order,

arXiv:2203.16081



Structure of Q (III)

The following theorem basically states that each of the sets
Q0, Q1 . . . , Qm−1 induces either a clique or an independent set,
and there are at most two cliques among them.

Moreover, the theorem states that for every independent set
Qi1 , there exists uniquely determined independent set Qi2

among Q0, Q1 . . . , Qm−1 such that there are all possible edges
between Qi1 and Qi2 and there are no edges between Qi1 and
Q \Qi2 .



Structure of Q (IV)

Theorem 4.6 ([GSY22, Theorem 4.1])

Given an odd prime power q and an integer m > 1, m divides
q + 1, the following statements hold for the subgraph of
GP (q2,m) induced by Q.
(1) If m divides q+1

2 and m is odd, then Q0 is a clique, and
Q1, . . . , Qm−1 are independent sets; moreover, for any distinct
i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1, there are all possible edges
between the sets Qi1 and Qi2 if i1 + i2 ≡ 0 (mod m), and there
are no such edges if i1 + i2 ̸≡ 0 (mod m). In particular,
Q1 ∪Qm−1, . . . , Qm−1

2
∪Qm+1

2
induce m−1

2 complete bipartite

graphs.

[GSY22] S. Goryainov, L. Shalaginov, C. H. Yip, On eigenfunctions and

maximal cliques of generalised Paley graphs of square order,

arXiv:2203.16081



Structure of Q (V)

(2) If m divides q+1
2 and m is even, then Q0, Qm

2
are cliques,

and Q1, . . . , Qm
2
−1, Qm

2
+1, . . . , Qm−1 are independent sets;

moreover, for any distinct i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1,
there are all possible edges between the sets Qi1 and Qi2 if

i1 + i2 ≡ 0 (mod m) and {i1, i2} ≠ {0, m
2
}

and there are no such edges if

i1 + i2 ̸≡ 0 (mod m) or {i1, i2} = {0, m
2
}.

In particular, Q1 ∪Qm−1, . . . , Qm
2
−1 ∪Qm

2
+1 induce (m2 − 1)

complete bipartite graphs.



Structure of Q (VI)

(3) If m does not divide q+1
2 , then m is even.

(3.1) If m
2 is odd, then Q0, Q1, . . . , Qm−1 are independent sets;

moreover, for any distinct i1, i2 such that 0 ≤ i1 < i2 ≤ m− 1,
there are all possible edges between the sets Qi1 and Qi2 if

i1 + i2 ≡
m

2
(mod m),

and there are no such edges if

i1 + i2 ̸≡
m

2
(mod m).

In particular, if m = 2, Q = Q0 ∪Q1 is a complete bipartite
graph; if m ≥ 6,
Q0 ∪Qm

2
, . . . , Qm−2

4
∪Qm+2

4
, Qm

2
+1 ∪Qm−1, . . . , Q 3m−2

4
∪Q 3m+2

4

induce m
2 complete bipartite graphs.



Structure of Q (VII)

(3.2) If m
2 is even, then Qm

4
, Q 3m

4
are cliques, and

Q0, . . . , Qm
4
−1, Qm

4
+1, . . . , Q 3m

4
−1, Q 3m

4
+1, . . . , Qm−1 are

independent sets; moreover, for any distinct i1, i2 such that
0 ≤ i1 < i2 ≤ m− 1, there are all possible edges between the
sets Qi1 and Qi2 if

i1 + i2 ≡
m

2
(mod m) and {i1, i2} ≠ {m

2
,
3m

2
},

and there are no such edges if

i1 + i2 ̸≡
m

2
(mod m) or {i1, i2} = {m

2
,
3m

2
}.

In particular, if m = 4, Q0 ∪Q2 is a complete bipartite graph; if
m ≥ 8, then
Q0 ∪Qm

2
, . . . , Qm−4

4
∪Qm+4

4
, Qm

2
+1 ∪Qm−1, . . . , Q 3m−4

4
∪Q 3m+4

4

induce m−2
2 complete bipartite graphs.



Structure of Q (VIII) and tightness of WDB for the
smallest eigenvalue of GP (q2,m)

Corollary 4.7 ([AGY22, Corollary 4.2])

Let q be an odd prime power and m be an integer m ≥ 2, m
divides q + 1. Then, except for the case m = 2 and 2 divides
q+1
2 , there is at least one pair Qi1 , Qi2 among Q0, . . . , Qm−1

such that Qi1 ∪Qi2 induces a complete bipartite subgraph.

Corollary 4.8 ([AGY22, Theorem 4.3])

Let q be an odd prime power and m be an integer m ≥ 2, m
divides q + 1. Then the weight-distribution bound is tight for
the eigenvalue (− q+1

m ) of GP (q2,m).

[GSY22] S. Goryainov, L. Shalaginov, C. H. Yip, On eigenfunctions and

maximal cliques of generalised Paley graphs of square order,

arXiv:2203.16081



Open problems (VI)

Problem 4.1
Investigate the maximality or near-maximality of the cliques
from Theorem 4.6.



Thank you for your attention!


