Feasible parameters of non-trivial divisible design graphs

Sergey Goryainov

September 3, 2025

1 Algorithm for generating feasible parameters of non-trivial DDGs

- We exclude all prime v.
- We exclude all tuples for which v is odd and k is odd.
- We exclude all tuples for which $k \leq 2$ or $k \geq v 2$.
- We exclude all tuples for which $\lambda_1 < \text{Max}(0, 2k v)$ or $\lambda_2 < \text{Max}(0, 2k v)$.
- We exclude all tuples for which $\lambda_1 = \lambda_2$.
- For a DDG with parameters $(v, k, \lambda_1, \lambda_2, m, n)$, we always have $k^2 = k + \lambda_1(n-1) + \lambda_2 n(m-1)$; see [3].
- DDGs with $\lambda_2 = 0$ are characterised in [3, Proposition 4.3]; we exclude such tuples.
- DDGs with $\lambda_2 = 2k v$ are characterised in [3, Proposition 4.7]; we exclude such tuples.
- DDGs with $\lambda_1 = k$ are characterised in [3, Proposition 4.5]; we exclude such tuples.
- Deza graphs with k = b + 1 are characterised in [2] and [4]; we thus exclude tuples for which $\lambda_1 = k 1$ or $\lambda_2 = k 1$.
- If $k \lambda_1$ is not a square and $k\lambda_2$ is odd, we exclude such tuples due to [1, Theorem 3.6].
- If $\lambda_1 = 0$, we exclude the tuples for which nk > v and the tuples for which nk = v and $k \neq n\lambda_2$.
- We exclude tuples for which $k \lambda_1$ is not square and $k^2 \lambda_2 v$ is not a square.
- We exclude tuples for which $k \lambda_1$ is not square and m(n-1) is not divisible by 2.
- We exclude tuples for which $k^2 \lambda_2 v$ is not a square and m-1 is not divisible by 2.
- We exclude tuples for which $k \lambda_1 = k^2 \lambda_2 v$.
- We exclude tuples for which $k^2 \lambda_2 v < 0$.
- If $k \lambda_1$ is a square and $k^2 \lambda_2 v$ is not a square, we exclude tuples for which k is not divisible by $\sqrt{k \lambda_1}$ and for which k is divisible by $\sqrt{k \lambda_1}$ and $m(n-1) k/\sqrt{k \lambda_1}$ is not divisible by 2. Otherwise the multiplicities f_1, f_2, g_1, g_2 are uniquely determined.
- If $k \lambda_1$ is not square and $k^2 \lambda_2 v$ is a square, we exclude tuples for which $k^2 \lambda_2 v \neq 0$ and k is not divisible by $\sqrt{k^2 \lambda_2 v}$ and for which $k^2 \lambda_2 v \neq 0$, k divisible by $\sqrt{k^2 \lambda_2 v}$ and $m 1 k/\sqrt{k^2 \lambda_2 v}$ is not divisible by 2. Otherwise the multiplicities f_1, f_2, g_1, g_2 are uniquely determined.
- If $k \lambda_1$ is a square and $k^2 \lambda_2 v = 0$, the multiplicities are f_1, f_2, g_1, g_2 are uniquely determined, where we put $g_1 = m 1$ and $g_2 = 0$.

- If $k \lambda_1$ is a square and $k^2 \lambda_2 v$ is a square such that $k^2 \lambda_2 v \neq 0$, then the multiplicities may not be uniquely determined.
- If the multiplicities are uniquely determined, we admit tuples $(v, k, \lambda_1, \lambda_2, m, n)$ for which the condition $0 = k + (f_1 f_2)\sqrt{k \lambda_1} + (g_1 g_2)\sqrt{k^2 \lambda_2 v}$ holds.
- If the multiplicities are not uniquely determined, we enumerate all possibilities for f_1 , try to recover f_2, g_1, g_2 from the conditions $f_1 + f_2 = m(n-1)$, $g_1 + g_2 = m-1$ and $0 = k + (f_1 f_2)\sqrt{k \lambda_1} + (g_1 g_2)\sqrt{k^2 \lambda_2 v}$. If these conditions are satisfied and there is at most one 0 among f_1, f_2, g_1, g_2 , we admit the tuple.

References

- [1] D. Crnković, W.H. Haemers, Walk-regular divisible design graphs, Designs, Codes and Cryptography, 72 (2014) 165–175.
- [2] S. Goryainov, W.H. Haemers, V.V. Kabanov, L. Shalaginov, Deza graphs with parameters (n, k, k-1, a) and $\beta = 1$, Journal of Combinatorial Designs, 27 (2019) 188–202.
- [3] W.H. Haemers, H. Kharaghani, M.A. Meulenberg, *Divisible design graphs*, Journal of Combinatorial Theory, Series A, 118 (2011) 978–992.
- [4] V.V. Kabanov, N. Maslova, L. Shalaginov, On strictly Deza graphs with parameters (n, k, k 1, a), European Journal of Combinatorics, 80 (2019) 194–202.